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We discuss the statistical mechanics of systems, such as vesicle phases, that consist of many
closed, disconnected fluid membranes. We show that the internal undulation free energy of a single
such membrane always contains a logarithmically scale-dependent “finite-size” contribution, with
a universal coefficient, that arises essentially from the absence of undulation modes of wavelength
longer than the size of the surface. We show that the existence of this contribution is closely related
to the existence of additional collective degrees of freedom, such as translations and polydispersity,
that are present in a system of disconnected surfaces but absent in a system of infinite surfaces such
as a lamellar or bicontinuous phase. The combination of undulation and collective mode free energy
contributions found here is shown to yield thermodynamic properties (e.g., size distribations) for
a vesicle phase whose parameter dependence is consistent with the scale invariance of the Helfrich
bending energy. We briefly discuss the conceptually related problem of a polydisperse ensemble of
fluctuating one-dimensional aggregates, such as rodlike micelles, for which we obtain the experimen-
tally observed scaling of micelle size with concentration. We conclude by discussing the application
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of our results to the interpretation of recent experiments on equilibrium vesicle phases.

PACS number(s): 64.60.Ak, 68.60.Bs, 87.22.Bt

I. INTRODUCTION

Certain types of surfactant molecules are known to self-
assemble in solution to form bilayer membranes. Dilute
solutions of such molecules can as a result often be sensi-
bly described as ensembles of thin two-dimensional (2D)
surfaces [1]. The thermodynamic behavior of such an
ensemble of membranes is controlled by a competition
between the bending energy of the membranes, which
typically favors the formation of a lamellar structure, and
the disordering effects of conformational entropy, which
favor formation of isotropic bicontinuous [2—4] or vesicle
phases [5-8]. Because of the importance of entropic ef-
fects in these systems, an accurate description of their
thermodynamic behavior seems to require a rather de-
tailed understanding of the configurational entropy asso-
ciated with the fluctuations of semiflexible surfaces.

The starting point for a continuum description of a
fluid membrane is the bending energy proposed by Can-
ham [9] and Helfrich [10],

H:/dA[%ncz+kK] , (1)

in which dA is a surface area element, C = C; + Cs
and K = C{C; are the mean and Gaussian curvatures,
C; and C; are principal curvatures, and x and & are,
respectively, the mean and Gaussian rigidities. For sim-
plicity, we will restrict ourselves in this paper to the case
of symmetric bilayer membranes, and have therefore not
included a spontaneous curvature term in the above. The
total bending energy for such a bilayer is easily shown to
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be invariant under simple affine dilations or contractions
that change the size but not the shape of the surface.
One consequence of this scale invariance, and the absence
of any energetically preferred length scale for a discon-
nected surface, is that the size distribution of an ensemble
of such surfaces is found to be very sensitive to the pres-
ence of any scale-dependent entropic contributions to the
free energy.

In the past decade, a great deal of work has been de-
voted to understanding the fluctuations of surfaces de-
scribed by Eq. (1). Much of this work has focused
more specifically upon understanding the effects of short-
wavelength undulations, whose primary effect is to de-
crease the free energy cost of bending the membrane.
The resulting change in the curvature dependence of the
free energy can, it has been shown [11-15], be absorbed
into renormalizations of a pair of scale-dependent elastic
parameters £(R) and R(R), that describe the resistance
of a fluctuating membrane to the formation of curved
regions of characteristic length scale R. These renormal-
ized rigidities are found to vary with length scale R as

2
R(R):n—%h(-}—?——) ,

a?

aT R?
K,(R)_r\:+87rln(a2) , (2)
where a is a microscopic cutoff length, and o = 3 [12-15]
and & = 10/3 [15] are universal coefficients. The scale
dependence of these renormalized rigidities suggests a de-
scription of the free energy of a fluctuating surface of
characteristic length scale R (where R is, e.g., the radius
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of a vesicle) in terms of a renormalized, or coarse-grained,
bending energy

Hp = / dA [ Le(R)C® + R(R)K | 3)

which, as a result of the logarithmic scale dependence
of the renormalized rigidities, also varies logarithmically
with the size of the surface. The scale dependence of this
effective elastic energy has played an important role in
most recent models of membrane phase behavior, includ-
ing both phenomenological models of the global phase
behavior [16-20] and several more detailed treatments of
the vesicle phase [18,14,21,22,8].

In the present paper, we consider the statistical me-
chanics of an equilibrium system of closed disconnected
surfaces, such as a vesicle phase. The core of the paper
is a systematic calculation to first order in temperature
of the free energy F' of a closed, finite membrane of fixed
but arbitary topology and constrained area. This cal-
culation is a generalization of our treatment in an ear-
lier paper [23] of the case of simple spherical surfaces.
We find here, as in Ref. [23], that the total internal free
energy of a closed surface generally contains, in addi-
tion to contributions arising from the renormalization of
the bending rigidities by short-wavelength undulations,
other logarithmically size-dependent contributions that
arise instead from a proper treatment of (i) the contri-
butions of Goldstone modes such as translations, and (ii)
the long-wavelength cutoff which must be imposed on
the spectrum of undulation modes due to the finite size
of the surface. We try, in what follows, to clarify the inti-
mate physical relationship between these two aspects of
the problem by discussing our results in terms of a com-
petition between the loss of undulation entropy on a set
of disconnected surfaces, relative to that of a single large
surface, that arises from the destruction of undulation
modes of wavelength longer than the size of the discon-
nected surfaces, and the corresponding gain in entropy
that arises from the creation of new degrees of freedom,
such as rigid translations, that are present only in a sys-
tem of disconnected surfaces.

The issues emphasized here, of how one should treat
the statistical mechanics of a finite object that exhibits
both soft internal degrees of freedom (e.g., undulations)
and Goldstone modes such as translations, are not pe-
culiar to the problem discussed here, but seem to arise
in the treatment of any system containing finite aggre-
gates with many internal degrees of freedom. Many of the
same questions have arisen previously (and often caused
a great deal of confusion), in the context of models of
nucleation [24-26], of micellar solutions [27-30], and of
the droplet microemulsions phase of oil-water-surfactant
mixtures [30-32]. Our treatment of the free energy of
a spherical vesicle in Appendix C is actually quite sim-
ilar to that given for the free energy of a critical nu-
cleation drop in the field-theoretic approach to nucle-
ation [24,25]. These issues are particularly important in
the interpretation of experiments on systems of bilayer
membranes, however, because the scale invariance of the
bending energy, together with the rather small bending
rigidities exhibited by most systems of interest, makes
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the equilibrium size distribution in such systems partic-
ularly sensitive to the effects of even small and weakly
size-dependent entropic effects. There are two other sur-
factant systems for which we expect the resolution of
these issues to be of similar importance. The first is the
droplet microemulsion phase, which will be discussed in
detail elsewhere [33]. The second is the micellar phase
of linear (i.e., rodlike or wormlike) micelles, which are
sometimes referred to as living polymers, found in some
surfactant solutions [29]. A linear micelle has in common
with a bilayer vesicle the mathematical property that the
naive free energy cost to create a new micelle by break-
ing a larger micelle into two pieces, which is given by the
free energy needed to create two new ends, is (like the
bending energy cost of splitting a vesicle into two smaller
vesicles) completely independent of the size of the parent
or daughter aggregate. Consequently, the mathematics
and the conceptual issues encountered in the calculation
of the size distribution for a system of micelles are closely
analogous to those encountered in the vesicle system. A
brief treatment of the linear micelle phase is thus given
in Sec. IV of this paper.

The structure of this paper is as follows. Section II
contains our calculation of the free energy of a single
membrane, of arbitrary shape, with either a fixed num-
ber of surfactant molecules or a constrained area, the
results of which are summarized in subsection IIE. Ap-
pendixes A and B contain some details of the calculation
of the undulation free energy for a general surface. Ap-
pendix C contains a more direct calculation of the free
energy of a simple spherical vesicle in which we analyze
the sum over spherical harmonic undulation modes. In
Sec. III, we calculate the size distribution of a polydis-
perse suspension of many surfaces (i.e., a vesicle phase)
whose areas and particle numbers can fluctuate via ex-
change of surfactant molecules. In Sec. IV, we consider
the behavior of an equilibrium phase of fluctuating one-
dimensional micelles. A brief summary of our results,
and a discussion of their relevance to the interpreta-
tion of existing experiments on vesicle phases, is given in
Sec. V.

II. FREE ENERGY OF AN ISOLATED SURFACE

In this section we consider the statistical mechanics of
a system containing a single closed membrane that con-
tains a fixed number N of surfactant molecules. We cal-
culate the Helmholtz free energy for a single membrane
of fluctuating shape, but fixed topology, whose center-of-
mass position is confined to a box of volume V.

The conformation of the surface defined by such a
membrane can be described by a three-dimensional po-
sition vector X (o) written as a function of a coordinate
pair o = (0!,0?) that parametrizes positions within the
surface. We will assume in what follows that the mem-
brane fluctuates weakly around some equilibrium confor-
mation Xg(o) that is a local minimum of the bending
energy and that has an area A equal to the unstretched
area Ap of the membrane, where A9 = a?N and where

a? is an equilibrium area per surfactant molecule. We
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also assume that the surface X can be characterized by
some typical radius of curvature or structural length R,
such as the equilibrium radius of a spherical vesicle or
the “pore size” of a multiply connected surface typical
of the bicontinuous (i.e., cubic or L3) phases. We iso-
late the logarithmic size dependence of F' by considering
a family of equilibrium surfaces X, that are related by
scale transformations of the form

Xo(o) = XXo(o) , (4)

which yields surfaces of the same shape and topology but
different areas and particle numbers, and examining the
dependence of F' upon, equivalently, the structural length
R or the scale factor A.

A. Construction of a partition function

In this subsection, we discuss the construction of a
continuum model for a closed, fluctuating membrane in
which the membrane is described as an idealized surface.
To begin, we discuss briefly how such a model might,
at least formally, be derived from a more microscopic
description.

We consider a membrane of N surfactant molecules
immersed in a reservoir of solvent. Our starting point is
thus the classical partition function Z of the entire sys-
tem of surfactant and solvent, which can be expressed mi-
croscopically as a phase-space integral over the positions
and momenta of both surfactant and solvent molecules.
Integrating over all momenta for both solvent and sur-
factant molecules yields a corresponding configurational
integral. Formally integrating over the positions of the
solvent molecules while holding the positions of the sur-
factant molecules fixed then yields a configurational in-
tegral

N
1 d3r; _ -
Z:ﬁ“/)‘—sleﬂv({}), (5)
Ti=1

involving only the 3D positions r; of the surfactant
molecules, which, for simplicity, we have treated like
point particles, where the effective potential U({r}) is
given by the free energy of a constrained system in
which the surfactant molecules are fixed to positions
{r} = {r1,...,rn}. In the above, 8 = 1/T, where we
use a Boltzmann constant of kg = 1, and A = h/v27mT
is the thermal de Broglie wavelength for a surfactant
molecule of mass m.

To obtain a continuum description of the membrane,
we wish to convert this integral over molecular positions
into an integral over possible conformations of a surface
X defined by the locus of points occupied by the surfac-
tant molecules. We will assume in what follows that this
surface fluctuates only weakly around the equilibrium
surface X, thus allowing us to describe displacements
of X relative to X by a small normal-displacement field
h(o), where

X(0) = Xo(0) + Bo(0)h(0) , (6)
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and where fip(0) is a unit vector normal to Xg at point o.
The position r; of the ith surfactant molecule can then
be parametrized by its 2D position o; within surface X,
and by its normal displacement h; from surface X,. To
convert Eq. (5) into a continuum model for undulations
of X (o), we must integrate over the in-plane positions o;
of the surfactant molecules while constraining their nor-
mal displacements h; to follow a specified surface h(o;),
and then express the remaining integral over the differ-
ent possible shapes of the surface as a path integral with
respect to h(c). For a weakly fluctuating membrane,
this separation into normal and tangential motions can
be formally accomplished by inserting into Eq. (5) a
representation of unity as the integral of a product of §
functions that constrain the height h; of each particle to
follow the surface h(c;), yielding a path integral

dh(o _
Z ~ |[/_¥J[h]e AH[R] (7)
in which

o—BHI __H/ Eri g h

h(o;)) e PUUED

(8)

is the constrained partition function of an interacting 2D
fluid of surfactant molecules that is constrained to lie on
the surface X, so that the effective Hamiltonian H|A] is
the corresponding constrained free energy. The canceling
factors of J and J~! in Egs. (7) and (8) refer to the so-
called Fadeev-Popov determinant

J[h) = Hn

discussed in Refs. [34,35], in which #i is the local normal
to the physical surface X and fg is the normal to refer-
ence surface Xy. The inclusion of these canceling factors
guarantees that both the path integral measure used in
Eq. (7) and the effective Hamiltonian H[h] defined in Eq.
(8) each have a physical meaning that is independent of
one’s choice of reference surface X or coordinate system
o [36]. The shape dependence of J[X] will not, however,
play any role in the calculation of the free energy to the
order in temperature that we will consider here.

The path integral in Eq. (7) has been expressed
schematically as a product of integrals over the normal
displacements h(o) measured at the center of N evenly
spaced “patches” of membrane located at points o. In the
quasimicroscopic approach presented above, the number
of independent degrees of freedom, or patches, needed
to specify the shape of the surface was necessarily as-
sumed to be equal to the number of surfactant molecules,
implying the use of patches of area equal to the physi-

) - ig(0) (9)

cal area a2 occupied by a surfactant molecule within the
membrane. In what follows, we will consider instead a

coarse-grained model in which the molecular size a, is
generalized to an arbitrary cutoff length a, and in which
each patch (or independent degree of freedom) of area
a? is treated as a single coarse-grained “molecule.” Con-
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sistency with the underlying phase-space integral sug-
gests that in the coarse-grained model A(a) should be
taken to be the de Broglie wavelength for a patch of mass
m(a) = pa?, where g is the 2D mass density of the mem-
brane. This yields a cutoff-dependent thermal de Broglie
length

Aa) =v?/a (10)

in which

v? = h/\/2moT (11)

is a cutoff-independent constant with units of (length)Z.

Because the length A depends upon the value of
Planck’s constant h, it can have no well-defined numer-
ical value within a purely classical statistical mechani-
cal treatment. Consequently, one’s choice of a numerical
value for A should have no effect upon the physical predic-
tions of the model. This is easily shown to be true for any
system with a fixed total number of surfactant molecules
by noting that, because A (or v?) enters the partition
function only via a multiplicative factor of A~%, it can
enter the total free energy only via an additive constant

8F = NTIn()\?) (12)
which is simply proportional to the total number of sur-
factant molecules in the system. In any system, of either
an isolated surface or an ensemble of many surfaces, with
a fixed total number of surfactant molecules, such a con-
stant free energy contribution per surfactant molecule
can have no effect upon physically observable properties
such as the size distribution [37]. In order to preserve this
trivial dependence of the free energy upon A (or v) within
the context of a continuum theory, we will insist in what
follows that the continuum theory be regularized in a
way that yields a total number of coarse-grained degrees
of freedom that is strictly proportional to the unstretched
area, and thus the number of microscopic degrees of free-
dom, of the surface of interest.

We assume that the effective Hamiltonian (or con-
strained free energy) H[X] of a surface of fixed particle
number can be parametrized as a sum

H[X] = Hbend[x] + Hflat (A) (13)
of a bending energy Hpena[X] of form (1) plus a
curvature-independent but area-dependent contribution
H¢14:(A) that is given by the free energy of a flat mem-
brane of particle number and area equal to those of the
physical surface. The effective Hamiltonian for a surface
X fluctuating weakly about an equilibrium surface X,
can then be expanded as
H = H[Xo] + JHbe'nd[h] + (SHﬂat[h] s (14)
in which dHpend[h] is a change in bending energy, and
0H f1q4[h] is a stretching energy that suppresses changes
of area.

Given an expression for the effective Hamiltonian, a

formal expansion of the free energy F = —TIn(Z) in
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powers of the temperature can then, in principle, be ob-
tained by expanding 6H = 0Hpend + 0Hyiqt in powers
of the field A and calculating F' in perturbation theory.
In the case of an incompressible or nearly incompressible
membrane, for which « is the only relevant energy scale
in the problem, this procedure leads naturally to an ex-
pansion of F//T in powers of the dimensionless ratio T'/«.
In this article, as in all previous treatments of membrane
fluctuations, we will assume that the membrane is in the
“quasirigid” regime k > T and will calculate the fluctua-
tion contributions to F' only to lowest nontrivial order in
T, giving contributions of O(T') to the free energy. This
O(T) contribution to F can be obtained in a harmonic
approximation in which we expand d H to harmonic or-
der in h, thereby generating a set of harmonic undulation
modes, and simply sum the fluctuation free energies of
these (nearly) independent oscillators.

The effects of the Fadeev-Popov determinant can be
absorbed into the Hamiltonian by adding to the Hamil-
tonian an additional term

0H ;[h] = —T In(J[R]) (15)
In the limit A = 0 (or X = Xy), J[h] = 1and so 6Hy = 0.
Upon expanding § H; in powers of k, one finds that, be-
cause of the different prefactors of T' in H; and k in
6Hypend, harmonic and higher order contributions to d Hy
are all smaller than the corresponding contributions to
dHpeng by an overall factor of T/k. When attempting
to calculate only the dominant, O(T) contributions to
F within an expansion in powers of temperature, it is
thus sufficient to ignore the h-dependent contributions
to In(J), and to approximate J[h] by unity. Corrections
to this approximation appear only in free energy con-
tributions of order T%/k and higher, which we do not
attempt to calculate.

Expanding the bending energy of Eq. (1) to quadratic
order in k(o) yields an energy of the form

5 Hyena = 1 / dAo h(0)Lh(o) +-- ,  (16)
in which dAg is the area element on surface Xg and £ =
L[X,] is a differential operator. The form of £ (which we
discussed in more detail in subsection IIB) will depend
upon the curvature of the surface Xy, but reduces to
L = kV* in the limit where X, is flat. The harmonic
bending modes of the membrane are the eigenfunctions
Ya(0) that satisfy

Lo = € (17)
with eigenvalues e¢,. We expand h(o) in a basis of these
eigenfunctions, writing

h(o) = Z hava(o) , (18)

and assume a normalization for the ¥4’s in which [38]

/dAo Ya(o)p(o) = dap , (19)
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giving a harmonic bending energy
§Hpena = 3 Y _ €alhal® . (20)

In what follows, we sometimes adopt a bra-and-ket nota-
tion for normal displacements in which integration with
respect to dAp is represented by an inner product, so
that, e.g., normalization condition (19) is written as
(Yal¥s) = dap-

To express Z as an integral over the mode ampli-
tudes h, rather than the patch heights h(o), we must
apply transformation (18) to the measure in Eq. (7).
The transformation of N, such local coordinates (where
N. = A/a? denotes the number of continuum or “coarse-
grained” degrees of freedom in the model) into an equal
number of collective-mode coordinates, with normaliza-
tion condition (19), yields a measure

dh(c) _ dha
H/ Xa) ‘H/ aNa) (21)

This, together with Eq. (10) for A(a), yields a collective-
mode representation

dha _
z:H/Fe BH[N (22)

in which the cutoff a appears only via a restriction on the
number of modes included in the product, and in which
we have approximated J[h] by unity [39].

Symmetry arguments indicate that the set of eigen-
modes {¢o} for a closed surface must include several
Goldstone modes, with eigenvalues €, = 0.

(i) Because the bending Hamiltonian Hpepnq is invariant
under the scale transformation X (o) — AX(o), there
must exist one zero mode that generates an infinitesimal
dilation of X.

(ii) Because Hpeng is invariant under rigid translations,
there must exist three zero modes that generate infinites-
imal translations of the surface.

(iii) Because Hpeng is invariant under rigid rotations,
there can exist up to three modes of h that generate
infinitesimal rotations.

The dilation and three translation modes are always
present, but the number of nontrivial rotation modes ac-
tually depends upon the symmetry of surface Xo: If X is
a surface of rotation, one or more of the physical rotations
map the surface Xy onto itself, without generating any
normal displacements. Such trivial rotations correspond
to simple reparametrizations of the surface, or 2D fluid
flow, and are thus already implicitly included within the
constrained free energy H[Xo] of the 2D fluid constrained
to surface Xo. Consequently, rotations should not be
treated as additional conformational degrees of freedom
unless they induce a normal displacement of the mem-
brane. For example, a spherical vesicle has one dilation
mode (the ! = 0 spherical harmonic) and three trans-
lation modes (the three I = 1 harmonics), but has no
nontrivial rotation modes, whereas a completely asym-
metric surface would have three nontrivial rotations. By
convention, we will denote the dilation mode by g, the
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translation modes by %; ...%3, and the rotation modes
by %4...%¥N,—1, where Np denotes the total number of
zero modes.

We now consider the effects of area elasticity, which is
given by the stretching energy 0 Hyq¢(A). The in-plane
elasticity of a nearly incompressible membrane can be
approximated by a harmonic form

(A= Ap)?
§Hyiqt[h] = B————on ,

(23)
where B is a 2D compression modulus and Ag is the un-
stretched area of the membrane. We assume in what
follows that B is finite (i.e., the membrane is compress-
ible) but that the characteristic energy scales BAg and &
for changing, respectively, the area and curvature of the
membrane by factors of order unity form a hierarchy

BAy>k>T |, (24)

so that the fractional changes in area are very small. The
typical parameter values for real surfactant membranes
are of order B ~ T'/a?, where a? is a molecular area and

Kk ~ (1 —50)T. The area A is a functional of h(c), and
can be expanded explicitly as a Taylor series

A[h]ﬁAo—/(L‘loC’Qh

+/dth[—%V3+Ko]h+---, (25)
where V32 is the covariant Laplacian on surface X, and
where the local mean curvature Cy(o) is by convention
positive wherever i points towards the locally concave
side of the surface. Examination of Eq. (25) shows that
the energy 6 Hyiq¢ can involve contributions of all orders
from all of the undulation modes, giving a combined har-
monic contribution to é Hpend + 6 H s1q: Whose eigenmodes
are mixtures of the eigenmodes ¥, of 6 Hpena alone, and,
more importantly, producing anharmonic contributions
that can become arbitrarily large in the limit of large B.

In order to bypass this problem, we first note that one
mode, the dilation mode %9, does not contribute either to
the harmonic bending energy or to the translational and
rotational entropy, but enters the harmonic Hamiltonian
only through its effect on the area. It is therefore always
possible, by an appropriate choice for the value of the
mode amplitude hg, to achieve any desired values of A at
specified values of all of the other mode amplitudes, and
to do so without affecting the harmonic bending energy.
This observation suggests that we might think of the area
as being regulated by the “breathing” mode amplitude kg
alone, which in a nearly incompressible membrane must
constantly adjust itself so as to compensate for the excess
area associated with all of the other modes, and keep A
always near Ag.

We implement this idea formally by changing our ex-
pansion of k(o) to one in which the coordinate hg is
replaced by the area A, giving a new set of collective
coordinates

{h;} = {A, hl,hz,...} y (26)
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with hy = A. This change of coordinates immediately
diagonalizes the harmonic Hamiltonian and removes all
anharmonic contributions to Hyj;. The path integral
measure is written in this coordinate system as

IL/% - (41

where the Jacobian J4[h] is the determinant of the trans-
formation matrix dh,/8h);. While J, is in general a
functional of h, it is straightforward to show that it is
sufficient when evaluating F' only to O(T) (ie., in a
harmonic approximation) to also approximate J4 by its
value J4[h = 0] evaluated for X = X,. Furthermore,
because the inverse transformation matrix ohl,/0hg dif-
fers from the identity only within the row associated with
the area A, its determinant J ;' = det|dh/,/dhg| is given
exactly by the single partial derivative

a>0

i = 250

(28)

hi,hz,...

The value of this derivative at A = 0 can be obtained
by inspection of the Taylor expansion (25) for the area,
which yields an approximation for J4 as a dimensionless
constant

Jt~ —/dAo Co(o)po(o) (29)

in which (o) is the dilation mode eigenfunction and
Co (o) is the mean curvature of the reference surface. This
constant depends upon the shape, but not the overall
size, of surface X¢. The partition function can thus be
written to the required accuracy as an integral

dA dh, _
ZN:JA/TJ—Z—H/FEBH R (30)
a>1

which we will hereafter denote Zy to indicate that it
is the partition function for a membrane with a fixed
number N of surfactant molecules.

Use of the harmonic approximation for H, with har-
monic forms (16) and (23) for Hpeng and Hyqs, then
allows Zpy to be factorized as a product

ZN ~ e_ﬂH[xo]ZareaZtranaZrotZund (31)

in which Z,,.e, is associated with area fluctuations, Z;,qn,
with rigid translations, Z,,; with nontrivial rotations,
and Z,,q with undulations. The corresponding free en-
ergy

FN = —Tln(ZN) (32)
can thus be expressed as a sum

FN = H[XO] + quea + Ftrans + F’rot + Fund ) (33)

in which Fyn,q = —TIn(Zyna), etc. Each of these con-
tributions will be considered separately in the following
subsections.
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An alternative approach to the calculation of F', and
the one taken by most previous work, is to replace the
area-dependent energy Hyiq:(A) used in the above by a
simple constraint on the area, and to thereby treat a com-
pressible membrane of fixed particle number as an ideal-
ized surface of constrained area. The effective Hamilto-
nian for such an idealized surface is assumed to be of the
form

H[X] = Hbend[x] +7r4A (34)
where 7 is the free energy per unit area of a flat surface.
To make contact between this approach and the above
treatment of a membrane of fixed particle number, we
define a corresponding partition function and free energy

/% ()

FAI = —Tln(ZAr) )

R

Za
(35)

for a surface of constrained area A[X]| = A’, where H
is the effective Hamiltonian of Eq. (34). We denote
these quantities Z4 and F4 to distinguish them from the
partition function and free energy Zx and Fiy of a real
membrane with fixed particle number N. The quantity
AA that appears in the denominator of the § function
in the above is an arbitrary area element that has been
introduced in order to obtain a dimensionless partition
function, and that we will assume has been assigned a
small value AA <« A. The quantities Z, and F4 have a
natural physical interpretation as, respectively, the par-
tition function and free energy for a surface whose area
is constrained to lie within a narrow range of values of
width A A surrounding the specified value A.

Within the harmonic approximation used above to cal-
culate Zx, Z4 can be factorized as a product

ZA = e_ﬁH[xo]ZAAZtransZrotZund (36)

where Zirans, Zrot, and Zy,q have the same meaning as
in Eq. (31), and

Zaa=AA Jyu /02 (37)

is a prefactor associated with fluctuations of the area over
a range AA, which is calculated by using the change of
variables of Eq. (26) and integrating with respect to A.

B. Undulations

The undulation free energy F,,q is obtained by inte-
grating over the amplitudes h, with o > Nj in Eq. (30),
yielding a sum

Funi= 3 1n(eas ) (38)

a>Ng

over harmonic oscillator contributions.
Before attempting to evaluate Eq. (38) on a finite
curved surface, it is instructive to consider first the sim-
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pler case of a finite but completely flat background sur-
face of linear size R and area A « R?. Here, we can
take the mode amplitudes to be Fourier components h(g),
with corresponding eigenvalues €(g) = kg*. We can thus
approximate the free energy per unit area by a Fourier-
space integral

Fgloe T d%q (
~ n

~ 1
A 2 Jiyr (2m)?

4
4 V 5 (202
— | 3
Kq 27rT) (g°b%) (39)

in which the presence of a finite size has been crudely
represented by a lower limit of 1/R on gq. For generality,
the presence of a short-wavelength cutoff has been intro-
duced through the use of a somewhat arbitrary weighting
function ¥(g?b?), in which b is a cutoff length of magni-
tude similar to the “patch size” a, and in which the form
of the function ¥(g?b?) is chosen so as to strongly sup-
press the contributions of wave numbers ¢gb > 1 and to
approach unity for gb < 1. The above integral yields a
total free energy of the form

RZ
Fflat ~ Afund + BTIn(;) s (40)

in which fynq is the free energy density for the corre-
sponding infinite surface, and B is a constant of order
unity whose value depends here on the exact manner in
which the long-wavelength cutoff is introduced. The ap-
pearance of a logarithmic finite-size contribution is a sim-
ple result of the logarithmic low-q divergence of the inte-
grand in Eq. (39). Equivalently, it can be understood as
a consequence of the facts that each mode of wave num-
ber ¢ ~ R~! makes a contribution of order In(R/v) to
Fy.4, and that the low-q cutoff excludes a finite number
(of order unity) such modes from a surface of area R2.
We thus see immediately that on any finite surface the
calculated coefficient of any logarithmic contribution to
F,,.q will depend sensitively upon one’s treatment of the
few longest-wavelength modes.

To calculate F,,q for an arbitrary closed surface, we
must first take into account the curvature dependence
of the operator £. The explicit form of L[Xg] has been
calculated previously by several authors [13-15,40], who
obtained (in standard differential geometric notation)

L£=r(V+ LIV, YV, + Lo)
LY = (LC? - 4K)g" + 2CKY (41)

where K;; = fip - 0;0; X, is the curvature tensor, g;; =
0;Xo-0; X is the metric tensor, and where the mean and
Gaussian curvatures

C = K}, K = leiel Ky KM (42)
are given, respectively, by the covariant trace and deter-
minant of K;;. The curvature dependence of Lo is more
complicated [40] but is not needed for what follows, and
so is not displayed. In the above, we have left the sub-
script 0 on most geometrical quantities implicit, and will
asssume in the rest of this subsection that all gradients,
curvatures, and area elements are defined on the surface
X unless otherwise noted.
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To make Eq. (38) meaningful on a closed surface, we
next express (39) as an operator expression

T, ., vt
Fund = E’I‘r [In(ﬂ—zﬁ> ‘I/:| y (43)

in the Hilbert space of functions living on the surface X,
where Tr' denotes a restricted trace

Tr,[' : ] = Z <"/’a| T Wja) (4-4)

B=No

over the subspace of undulation modes only, explicitly
excluding the Ny zero modes 8 = (0,1,...,Ng — 1). In
Eq. (44), we have used bra-and-ket notation for the un-
dulation eigenmodes 1bm in which the inner product is
defined by an integral #'.h respect to surface area. The
quantity ¥ in the above is a regularization operator that
acts to suppress the contributions of short-wavelength
undulations, and that is understood to be an operator
generalization of the scalar function ¥ used in Eq. (39) to
describe a flat surface. The simple regularization scheme
used in Eq. (39) can be described in terms of a regulariza-
tion operator ¥ that is diagonal in a basis of plane waves,
giving a translationally invariant operator, with diagonal
elements given by the scalar function ¥(g2b?). It will be
enough in much of what follows to assume that ¥ is some
appropriate generalization of this operator that is chosen
to give the same effective area per degree of freedom, in
a sense defined below, when applied to different surfaces,
and that it reduces to the simple form used above, with
some specified choice for the function ¥(g2b?), when ap-
plied to a flat surface. The problem of constructing an
explicit form for ¥ on a curved surface that satisfies these
conditions is deferred to Appendix A.

We wish to express F' in what follows as a function of
the value of a cutoff or patch area a? that is defined by
the ratio

a? = Ay/N. (45)

where N_ is the total number of continuum, or coarse-
grained, degrees of freedom in the model, including both
undulation and zero modes. The appropriate definition
of the number of degrees of freedom in the regularized
theory is given by an unrestricted trace

N, =Tr[¥] (46)

of the regularization operator ¥. This definition of N,
has the properties that

(i) it reduces to the naive definition of V. as the num-
ber of modes in the simple case in which, as on a flat
surface, ¥ and £ can be simultaneously diagonalized in
terms of plane waves and ¥ can be taken to be a sharp
cutoff on wave number, and

(ii) it, like this naive definition of N, gives the overall
coefficient of T'In(v?) in the total free energy F', as defined
by Eq. (33).

On a flat surface, definition (45) gives an inverse patch
area, or density of degrees of freedom, of the form
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1 (47)

7= [ e

which yields a patch area a? o b?, with a constant of
proportionality that depends upon the form of ¥(z). For
simplicity, we will hereafter assume that the form of ‘il(m)
has been chosen to yield a = b, or, equivalently, that
[ b =1

We wish to express the undulation free energy Fy,q4
of a family of surfaces Xy as a function of the physical
parameters R, a, v, k, and T. Examining definition (43),
we note that the parameters v, k, and T appear within
Fyna/T only in the combination

4
N KV
l/4

Iil

; (48)

o
N

U

implying that F,,q/T can be expressed as a function of
the length scales R (or A), a, and © alone. Because we
expect a logarithmic dependence on R, we will assume,
and later confirm, that this scale dependence can be ex-
pressed as an expansion of the form

2 R2
Fund _ 4 fund +Baln(—R2) +B,,1n(—A2) +C
a v

T T
(49)

In the above, A o R? is the unstretched area, fy,,.q
is an asymptotic free energy density, whose value de-
pends upon the parameters a and o, and B,, B,, and
C' are scale-independent but possibly shape-dependent
constants. This is the most general form for the loga-
rithmic contributions that satisfies the requirement that
arguments of the logarithms be dimensionless ratios. The
first logarithmic contribution in Eq. (49), which depends
explicitly upon the cutoff length a, is of the form normally
associated with a renormalization of x and K. The sec-
ond logarithmic term, which, like the logarithmic contri-
bution in Eq. (40), is independent of the cutoff, is of the
form expected from such a finite-size contribution. Dis-
tinguishing the dependence of F,,4 on the cutoff length a
from its dependence on the physically irrelevant length v
thus provides a convenient way of distinguishing between
the effects of the short-wavelength and long-wavelength
cutoffs of the undulation spectrum.

The value of the coefficient f,,q in Eq. (49) can be de-
termined by considering the behavior of F),,4 in the limit
of large R, i.e., large dilation. In this limit, the curva-
ture of X vanishes everywhere as 1/R while all internal
distances diverge as R. Consequently, the local environ-
ment of any point on X, asymptotically approaches that
of a point within an infinite flat surface. We thus expect
the limiting value

. Fund
funa = dim, 4~

(50)

of the free energy per unit area to be given by the free
energy density

2 ~
funa = [ Gz a7 ¥(g%) (51)
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of an infinite flat surface.

The value of the coefficient B, can then be determined
by considering the dependence of F),,,4 upon the arbitrary
length scale &. We first note that o enters definition (43)
for F,,.q only via an additive constant

5Fu'n.d = TNund hl(l;z) ) (52)

where

N’und ENC_NO (53)
is the total number of undulation modes in the continuum
free energy, excluding the Ny zero modes. In expansion
(49), where ¥ appears both via the second logarithmic
term and via the explicit ¥ dependence of f,,q in Eq.
(51), it is straightforwared to show that F,,4 depends
upon ¥ only through an additive contribution
8Fyna = T(N. — B,) In(0?) (54)
in which the term proportional to N. comes from the
Afunad term in the free energy expansion, and where we
have used Eqs. (45) and (47) to relate A to N.. Upon
equating the right-hand sides (RHS’s) of Egs. (52) and
(54), we immediately find that
B, =N, , (55)
i.e., that the correct dependence on 7 is obtained only if
the coefficient B, is exactly equal to the number of zero
modes excluded from the sum over undulations.

This result implies that the sensitivity of Fy,q on a
closed surface to the low-q end of the spectrum is actually
a sensitivity only to the number of modes included within
Fynd, and not to the details of the undulation spectrum.
To show that this is at least plausible, we consider the ef-
fects of a continuous deformation of some surface X, that
substantially changes the undulation spectrum but that
does not, like the extraction of a finite surface, change
the total number of undulation modes per unit area. For
the sake of concreteness, consider the deformation of an
infinite flat membrane into a periodic rippled structure
with a periodicity and typical radius of curvature both
of magnitude R. If we can somehow make a one-to-one
correspondence between the eigenvalues of the original
and deformed surfaces, we can write the difference in un-
dulation free energy as a sum

T €l
AF g = 5 Zln(:—)
o a

involving logarithms of the ratios of corresponding eigen-
values. The ratio € /e can differ significantly from unity
only for modes of wave number ¢R < 1, for which the
curvature-dependent contributions to £ in Eq. (41) are
seen to become comparable to the V% term, and is ex-
pected to approach unity algebraically for modes of wave
number gR > 1. We focus on the contribution of the
long-wavelength modes, since it is these that, on a closed
surface, give rise to a finite-size contribution to F,,q4.
The number of modes of wave number gR < 1 is of or-

(56)
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der 1 per area RZ?, so the total contribution to AF, .4
due to changes by factors of O(1) in the eigenvalues of
these modes is only a number of order T per area RZ.
This stands in contrast to the larger contribution of or-
der T'In(R?/v?) per area R? which is introduced in Fynq4
if, by breaking up the surface into many disconnected
pieces of area R?, we instead remove several modes per
area R? from the undulation spectrum. This suggests, in
agreement with Eq. (55), that only such a discontinuous
change of the number of undulation modes can produce
a logarithmic finite-size contribution.

Having determined fu,.q4 and B, by relatively simple
physical arguments, it remains for us to determine the
coefficient B, that controls the dependence of F,,,q upon
the cutoff length a. This will require a direct calcula-
tion of the dependence of F,, 4 upon the short-wavelength
cutoff, which will in turn require us to be more specific
about the form of operator ¥ which is used to impose
this cutoff. Because our final results for B,, which can
be expressed in terms of a renormalization of the rigidi-
ties k and &, are identical to those obtained by David
[15], the details of this calculation are relegated to a pair
of Appendixes. Appendix A contains a discussion of the
problem of choosing a physically consistent regulariza-
tion scheme for use on a curved surface. Appendix B
contains a direct calculation of F,,q. Our final result for
Fyna can be expressed as an expansion of the form (49),
with a coefficient B, = Ny, as expected, and

B, = gl_ /dA{—%aC’z +aK} (57)
T

where
a=3, a=10/3 (58)

are the coefficients that determine the cutoff dependence
of k(R) and R(R) in Eq. (2), and are the same as those
obtained previously by David [15]. The coefficient a = 3
is also the same as that obtained by most other authors
[12-15], with the notable exception of Helfrich [11,21].

By combining Egs.  (55) and (57), and absorbing
the curvature-dependent logarithmic contributions into
renormalizations of the scale-dependent rigidities, we can
express Fynd + Hpend[Xo] in the compact form

Fund + Hbend[xo]
R2
= Afund + Hr[Xo] + T No ln(—) +7TC , (59)

”)2

in which Hg[X] is a renormalized bending energy of the
form given in Eq. (3), with renormalized rigidities of
form (2) evaluated at a length scale R. The value of the
constant C in the above depends upon both the shape of
the surface X and the conventions used in defining the
structural length R.

The final expression (59) for F,q differs from that
obtained previously by David [15] only by the inclusion
of a finite-size contribution of magnitude

2
or =1 (154/7)

-\ (60)
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associated with the existence of Ny zero modes per dis-
connected surface, where the dependence on T'/k comes
from our use of definition (48) for ©. This finite-size con-
tribution is expected to be unimportant in systems, such
as bicontinuous phases, which contain a small number
density of disconnected surfaces and a large number of
handles, but has already been shown [23] to play a cru-
cial role in the thermodynamics of systems, such as the
vesicle phase [23], that contain a large number of discon-
nected surfaces.

C. Translations and rotations

In this subsection we discuss the free energy contri-
butions Fi.qns and F,,; associated with overall trans-
lations and nontrivial rotations of the membrane. Af-
ter discussing first translations and then rotations, we
also make some more general comments on the contribu-
tions of such collective modes and their relationship to
the finite-size contributions discussed in subsection IIB.

An infinitesimal translation of the membrane’s center
of mass by a displacement dX. ,,. = dX&,, €5 (where the
é,’s are three Cartesian unit vectors) can be generated
by a normal displacement

X (o) = X(o) + fa(o)[dXc.m. - (0)] . (61)
We can expand this in terms of normalized eigenmodes
of the form

1
Asg

Yalo) = (o) - &q , (62)

:

in which s, = [dA(é, - 1)%/A is a normalization con-
stant of order unity. The three eigenmodes ¥4 (o) (a =
1,...,3) can always be made orthogonal in the sense of

q. (19) by choosing the unit vectors &, to lie parallel
to the eigenvectors of the Cartesian tensor

1 N
Sij = Z /dA n;n; , (63)
in which case the coefficients s, are given by the eigen-
values of S;;. With this convention, we obtain mode
amplitudes

ho = dX%, /5.4 .

Integrating over the mode amplitudes for a situation in
which the membrane’s center of mass is confined to a box
of volume V then yields a free energy

(64)

5 (65)

3/2.3/2
Ftra'ns = _‘Tln(m—s) )

in which s = s;5,s3 is the determinant of S;;. Note that
this free energy depends explicitly upon the size of the
membrane as well as upon the size of the box.

This dependence of Fi,.u,, upon the membrane area
can also be obtained by a heuristic argument that was
presented in Ref. [23], in which we treated the membrane



52 STATISTICAL MECHANICS OF CLOSED FLUID MEMBRANES

as a point particle with a mass equal to that of the entire
membrane. The translational free energy of a particle
or rigid body of total mass m;,; whose center of mass
is confined within a box of volume V is given, either
classically or quantum mechanically, by the free energy

Firans = —TIn(V/A3, (66)
where Atot = h//2wmo: T is the center-of-mass thermal
de Broglie wavelength. The de Broglie length for a sur-
face of total mass m,; = pA scales as Ao = uz/\/Z with
the area, which, when substituted in Eq. (66), yields the
same size dependence as that of Eq. (65).

This analogy between the excess translational free en-
ergy Firans of a closed fluid membrane and the total
translation free energy of a point particle or rigid body is,
however, only of heuristic value, and can be misleading
if taken too seriously. Comparing Eqs. (65) and (66),
we see that the translational free energy of the mem-
brane actually does differ somewhat from that of the cor-
responding point mass, as indicated by the presence of
the geometrical factor s3/2 that appears in (65) but not

in (66). Each factor of 33,/ ? within Firans weights the
magnitude of center-of-mass motion along direction fi,
by a factor related to the extent to which motion in this
direction translates different patches of membrane along
their local normal direction rather than simply generat-
ing fluid flow within the local tangent plane of the mem-
brane. The inclusion of such a factor is necessary to
avoid double counting of the free energy contributions
associated with tangential displacements of the surfac-
tant molecules within the membrane surface, which are
already included in the constrained free energy H of the
2D surfactant fluid on a fixed surface. It is for the same
reason that, when calculating the free energy F..; aris-
ing from rotations of the surface, we will not include any
rigid rotations that map the surface Xy itself, since all
free energy contributions that arise from purely tangen-
tial displacements of the surfactant molecules within the
membrane are already included within the definition of
H. Serious errors of a similar nature can arise from the
naive use of center-of-mass coordinates to describe, e.g.,
the excess translational entropy of a three-dimensional
nucleation or microemulsion droplet [26,30], or the excess
translational and rotational free energy [28] of a rodlike
micelle. The translational and rotational free energies
defined here should therefore not be understood as be-
ing the free energies associated with simple rigid transla-
tions or rotations, but as excess free energies arising from
purely normal displacements of the surface.

The rotational free energy F,.,; of a fluid membrane can
be calculated in a manner analogous to that used above
to treat translations. A rigid rotation of X around an
axis d€2, where |dS2| is an infinitesimal angle of rotation,
is generated by a normal displacement

h(o) = 1ng(o) - [dR x Xo(0)] - (67)
The corresponding normalized eigenmodes can be writ-
ten as

Ya(0) = cair(o) - [f2a X Xo(0)]/A (68)
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where c, is a normalization constant of order unity, and
2, is a unit vector along rotation axis a, where o indexes
the different axes. This gives mode amplitudes of order
ha oc |d2| R . (69)
Integrating over rotation angles |d€2,| of order unity then
gives a free energy with a scale dependence of the form

R2
Frot >~ _TNrot ln<ﬁ) N (70)

where N,,: is the number of physical rotation modes.
Note that the R dependence of this contribution exactly
cancels that arising from the part of the finite-size con-
tribution to F,q that arises from the existence of N,
undulation modes. The presence or absence of nontrivial
rotation modes will thus have no effect upon the scale
dependence of the total free energy.

The forms obtained above for the scale dependence of
free energy contributions arising from translations and
rotations can be understood most simply in terms of a
simple relationship between the free energy contribution
of a given mode and the magnitude of the surface dis-
placements arising from it. The value of the factor Z, in
the partition function (e.g., Ztrans, Zrot, €tc.) that arises
from fluctuations of a particular mode amplitude h, can
be related, to within factors of order unity, to the rms
fluctuations of h, by writing

7 V)

v2

. (71)

To relate the fluctuations in h, to the resulting phys-
ical displacements of the surface, we define a spatially
averaged mean-squared normal displacement,

1 1/2
bo=|f [tmarmn] T )
so that A, is a measure of the typical surface dis-
placements induced by thermal excitation of mode «a
alone. Using normalization condition (19), we find that

Aq = +/(h2Z)/A, which yields
AR

Lo ~
2

, (73)

and a corresponding free energy contribution of order

F, ~ —Tln(AaR) ,

v2

(74)

where R ~ Al/2,

The forms of the translational, rotational, and finite-
size free energy contributions obtained above can all
be understood as immediate consequences of Eq. (74).
Equation (65) for Firqns is obtained by assuming a nor-
mal surface displacement

Atrana X V1/3 (75)

that is controlled by the size of the volume to which the
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surface’s center of mass is confined. Equation (65) for
F,.: is given by assuming that each nontrivial rotation
mode yields a surface displacement

Arot (R) xR (76)
proportional to the size of the surface. Finally, Eq. (60)
for the finite-size contribution to F,,4 can be obtained by
assuming that this contribution is a change in F' arising
from the destruction of Ny undulation modes, each with
a corresponding surface displacement

[T
Aund (R) ~R ; )

characteristic of undulation modes of wavelength R.

Because of the one-to-one correspondence between the
Ny collective-mode contributions to F and the corre-
sponding finite-size contributions to F,,4, it is also pos-
sible to define, for each collective mode, a total free en-
ergy contribution AF,, that gives the difference between
the actual free energy contribution F, of the mode in
question and the corresponding contribution of the un-
dulation mode that was “destroyed” in order to create
it, thus isolating the total change in free energy that is,
in some sense, attributable to the existence of that col-
lective mode. This free energy difference is given by the
logarithm AF, = —TIn(AZ,), where AZ, is the ratio
of partition function factors for mode o and the corre-
sponding undulation mode, which can be approximated
by the corresponding ratio

(77)

A
AZy ~ —2% 78
Aund(R) ( )

of rms surface displacements. The total free energy dif-
ference arising from translation modes, defined in this
way, is roughly

14
AFtrans ~ _Tln<m) )

und

(79)

and thus depends upon both volume V' and, through the
size dependence of A,,q4(R), the size of the surface. The
corresponding total free energy difference arising from
nontrivial rotation modes is roughly

T
1 :
AF,p; ~ 1T Nyos In (K) (80)

The quantity AF,..; is independent of the size of the sur-
face because the surface displacements induced by rota-
tion and long-wavelength undulation modes both scale
linearly with R, but depends upon T/ because the sur-
face displacements arising from undulations are smaller
than those arising from nontrivial rotations by a factor

proportional to 4/T/k.

D. Compressible vs incompressible membranes

In this subsection we consider the contributions Fi, .o
and Hyqi(Ao) that arise directly from a treatment of the
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membrane as a compressible fluid of fixed particle num-
ber, rather than as an idealized surface of constrained
area. In so doing, we establish the equivalence of these
two models.

We first consider the contribution F,,., associated
with fluctuations of the area in a membrane of fixed par-
ticle number. Evaluating the partition function factor

Z = JA/—dAe'%ﬁB(A_A")z/A“ (81)
area — VZ
yields the harmonic oscillator free energy
T Bvt
Forea~—In{ ———— ] . 82
2 n(szAOJi) (82)

Taken alone, this contribution has two rather disturbing
features:

(i) it contains a logarithmic dependence upon the area
(or the structural length R, where Ay oc R?) that arises
from area fluctuations but that remains nonzero even in
the limit B — oo in which such fluctuations are com-
pletely suppressed, and

(ii) it contains a logarithmic dependence on B that
diverges in the same limit of an incompressible fluid.

We now show that both the scale dependence and the
B dependence of F,.., are canceled in any real system
by a subtle logarithmic contribution to the free energy
Hy10:(Ap) of a flat, unstretched membrane.

The free energy Hyi:(A) about which the effective
Hamiltonian H has been expanded is itself the total free
energy of an interacting 2D fluid of fixed particle num-
ber on a finite surface of fixed area. The most obvious
approximation for the scale dependence of Hy;; would
be to assume that it is extensive in NV and A, which
would capture the dominant behavior of the fluid free
energy in the thermodynamic limit in which N, 4 — oo
at fixed N/A. We must consider the possibility, however,
that this free energy might also contain subthermody-
namic contributions that, like the other free energies of
interest in this problem, are either logarithmically size
dependent or size independent. Such contributions are
subthermodynamic in the sense that they make a negli-
gible contribution to the free energy per area of a large
surface, but must nonetheless be considered here because
they make a nonvanishing contribution to the free energy
of the surface as a whole.

To determine whether any such contributions exist, we
must isolate the dominant subthermodynamic contribu-
tions to the free energy of an interacting 2D fluid on a
finite surface. To this end, it will be useful to consider
the relationship in a finite system between the canon-
ical partition function Zy(A) or Helmholtz free energy
Fn(A) = —Tlnr[(Zn(A)] of a 2D fluid of exactly N par-
ticles on a finite surface of area 4 and the corresponding
grand canonical partition function and grand potential

E(A4,p) =) Zn(A)ePHN
N=0

(83)

Q(A, ) = ~T'In(E) (84)
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of the same fluid evaluated in an ensemble of fixed
area A but fluctuating particle number, in which the
number density is controlled by a chemical potential u.
(These quantities, which are used in this subsection to
describe the statistical mechanics of a hypothetical two-
dimensional fluid, should not be confused with the ther-
modynamic potentials used in the rest of this paper to
describe a fluctuating three-dimensional membrane.)

We first consider the unrealistic, but instructive, case
of a 2D ideal gas. To obtain the Helmholtz free energy
we use Stirling’s formula to expand the exact free energy
F = T1In(N!X\2/A), where ) is the thermal de Broglie
wavelength, giving

FN(A) = Afideal (TL) +T ln(27rN) + e, (85)
where figeqar(n) = Tn[ln(nA2) — 1] is the Helmholtz free
energy per unit area in the thermodynamic limit, and
where n = N/A. The logarithmic term in the above
is obtained by simply retaining one more term in the
expansion of In(N!) than is necessary when calculating
the extensive term alone [41]. The corresponding grand
potential Q can be obtained directly as the continuum
limit of an ideal lattice-gas model, which yields a grand
potential

Q(A, p) = Afidear({n)) — u(N)

that is rigorously extensive in the area, and is given
by the Legendre transform of the extensive part of Fiy.
Thus, at least for an ideal gas, the thermodynamic po-
tential of a finite system is extensive (to the accuracy
required here) only for a system with a fluctuating parti-
cle number, and contains a logarithmic contribution for
a system with a fixed particle number.

To generalize this result to the case of an interacting
fluid, we use Eq. (83) to obtain a general relationship
between the dominant subthermodynamic parts of F' and
). We first Taylor-expand Fx as

(86)

(87)

around the expectation value (N) in the grand canoni-
cal ensemble, where N = N — (N), and where (N) is
determined by the saddle-point equation

_ 9Fn (88)
In order to relate the second derivative 82Fy /ON? to the
2D compression modulus B, defined by

0%Fyn

B=A——1—~ |,

A2 (89)

we approximate Fiy ~ Af(n) by its dominant extensive
part and differentiate twice with respect to both A and
N to obtain

o*Fy _ BA

ON2 = N2 (90)
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Approximating the sum in Eq. (83) by an integral and
integrating over particle number fluctuations within a
Gaussian approximation then yields a grand canonical
potential

Qu) = Fivy — u{N) — %m(%) +ee, (91)

which agrees with Eqgs. (85) and (86) for the simple case
of an ideal gas, for which B = TN/A. The above deriva-
tion of the logarithmic factor from a consideration of the
effects of fluctuations in NV indicates that the extra loga-
rithmic contribution to F' is caused by the loss of entropy
associated with the suppression of these fluctuations.

The above argument shows only that the thermody-
namic potentials F' and 2 of an interacting fluid, like
those of an ideal gas, differ by a nontrivial logarithmic
contribution. In order to complete the analogy to the
situation found above for an ideal gas, we now argue
on physical grounds that the grand canonical free en-
ergy  will remain extensive in the presence of interac-
tions, so that the only logarithmic contribution to the
Helmholtz free energy F' will be the one given explicitly
in Eq. (91). We note that a large surface in contact
with an infinite particle reservoir can be broken into sub-
systems, each of which is effectively also in contact with
an infinite reservoir consisting of the original reservoir
plus the other subsystems. For subsystems much larger
than the range of interparticle correlations, fluctuations
of the internal states of different subsystems, including
their particle number, must become uncorrelated, so that
the total grand potential Q can be written as a sum of
free energies for the different subsystems. This additivity
implies a free energy that is strictly extensive in the area
or average particle number, with no logarithmic contribu-
tions. The same argument cannot, however, be applied
to a system of fixed particle number precisely because the
particle number fluctuations in different subsystems are
always correlated due to the constraint on the total par-
ticle number. It is apparently the reduction of entropy
associated with this correlation of particle number fluc-
tuations which gives rise to the logarithmic contribution
to F'.

The constrained free energy Hyq¢(Ao) for the un-
stretched surfactant fluid is, by definition, the free en-
ergy for a fluid containing a fixed number of molecules.
Its size dependence is thus of the form

T 2T N
Hyg1a1(Ao) = Affias + 3 111( z ) (92)

Ba?
expected of a Helmholtz free energy, where fyf;o; is the
free energy density per unit area of an infinite, flat un-
stretched membrane, and a2 = Ay/N is the area per
surfactant molecule in such a membrane.

The total free energy contribution of interest in this
subsection is the combination

AFN = Hflat (AO) + Fa‘rea ) (93)

which gives the free energy of a 2D surfactant fluid with
fixed particle number but fluctuating area. Upon com-
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paring Eqgs. (82) and (92), we see that the logarithmic
area and B dependences of Hyj,¢ and F,,q exactly can-
cel, leaving a combined contribution

a?J
Aﬂwzhﬁm—Tm(;;) (94)

with no logarithmic dependence on either R or B.

We now consider the corresponding contribution to the
free energy F4 of an idealized surface whose area is al-
lowed to fluctuate over a narrow range of values between
A and A+AA. The total free energy F4, for a completely
idealized surface of area Ay is given by the sum

FAO = Hbend[xo] + Ftra,ns + Frot + Fund + AFA (95)
in which
AF4 = Agr — Tln (AfjA) (96)

is the counterpart within F4 to the contribution AFy
considered above. The logarithmic term in Eq. (96) is,
like Fyeq in Fv, a free energy contribution arising from
small fluctuations of the area.

Upon comparing the corresponding contributions A Fiy
and AFs, we note that both quantities are of the same
form, i.e., the sum of an extensive term plus a scale-
independent term, and that they differ only by replace-
ment of the physical parameters ff;,: and a? appearing
in §F by the phenomenological parameters 7 and AA
appearing in F4. The constrained-area free energy Fs
thus becomes exactly equal to the physical free energy
Fn only if Fj is evaluated using the parameter values

r=fflat )

AA=d?. (97)
The identification of 7 with fgi.¢, which serves to equate
the extensive parts of Fiy and Fly, is primarily a matter
of convention, since ffio; can itself be set to any value
one wishes simply by choosing an appropriate reference
state when defining Fiy. The identification of AA with
a2, however, which affects the subthermodynamic part of
F4, is physically meaningful, since it is the magnitude of
the subthermodynamic part of the free energy that con-
trols physical properties such as the size distribution of
an ensemble of surfaces. The physical content of Eq. (97)
is thus that the free energy Fiy of a compressible mem-
brane is equal (to within a thermodynamically irrelevant
contribution proportional to the area) to the free energy
F'4 of an idealized surface whose area is allowed to fluctu-
ate over a range of values equal to the average area a2 per
surfactant molecule within the membrane. We emphasize
that this result for Fx is different from that obtained by
simply adding a harmonic stretching energy to the bend-
ing energy of an idealized surface (and thus ignoring the
logarithmic contribution to Hye:), which would instead
yield the free energy of an idealized surface whose area is
allowed to fluctuate over the much larger range of values
((A— Ao)?) ~ /AT /B.

We now show that the relationship between Fy and
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F4 obtained in Eq. (97) is precisely that which is needed
in order to guarantee that a model of idealized surfaces
of continuously variable area will actually yield the cor-
rect size distribution for a system of real membranes.
We consider a system containing a dilute suspension of
surfactant membranes, each containing an integer num-
ber of molecules that can vary via exchange of surfactant
molecules with a reservoir. The average number My (V')
of membranes of particle number IV whose center-of-mass
positions lie within a region of volume V is given by a
Boltzmann weight

My (V) = e BIFN(V)+p,N] (98)
in which Fn (V) is the Helmholtz free energy for a mem-
brane of N surfactant molecules whose position is con-
fined to a box of volume V', and p, is a surfactant chem-
ical potential. The corresponding quantity in a system
containing a gas of idealized surfaces of continuously vari-
able area is the total number of surfaces M4 (V, a2) whose
positions lie within a region of volume V' and whose areas
lie within the range between A = Na? and (N + 1)a2.
This quantity is given by the Boltzmann weight
M(V,a}) = e PFaVientod] (99)
in which —¢ = p,/a? is the chemical potential for the
area, and in which F4(V,AA) denotes the free energy
for a surface whose position is confined to a region of
volume V and whose area is allowed to fluctuate over
a range of values of width AA. The continuum size
distribution, as characterized by, e.g., the total num-
ber density of surfaces dp/dA per unit volume and unit
surface area, will be the same in the two models only
if My(V) = Ma(V,a2?). The quantities My (V) and
M4(V,a?) will be equal only if the corresponding free
energies satisfy Fy (V) = F4(V,a2), as found above.
The results of this subsection thus provide a rigorous
(but somewhat subtle) justification for the use of a model
of idealized surfaces to describe properties of an ensemble
of real, compressible membranes.

E. Total free energy for fixed N or A

Combining the results of subsections II A-IID, we can
express the total free energy Fy = F4(V,AA) of an ide-
alized surface of constrained area, as defined in Eq. (35),
as a sum

FA = Fint + Ftra'n.s (100)
of an “internal” free energy F;,: = H[Xo|+Faa+ Frot +
Fynd plus a translational free energy Fi,qns, which are of
the form

Fint =~ Afior + Hr[Xo] — Tln(——RT—
K

3
Ftrans x>~ _Tln(Vf ) ]
v

IISAA)

(101)
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where

.ftot =r+ fund (102)

is the total free energy per unit area of an infinite sheet
fluctuating about a planar equilibrium state. It is conve-
nient to remove the extensive part of the free energy by
defining the free energy per molecule (or unit area) rela-
tive to that in such a fluctuating planar surface, thereby
setting fi;ozr = 0 as a matter of convention. With this
convention, the remaining nonextensive free energy can
be written as a sum

VAA K
FA = HR[X()] —Tln( RS ) — %TN()III(T) +TC

(103)

in which the value of the constant C will depend in de-
tail upon the shape of the surface, the convention used to
define the structural length R, and even the form of the
regularization function used to calculate F,,q. In Ap-
pendix C, where we calculate the free energy of a spheri-
cal vesicle by directly analyzing the sum over undulation
modes, we obtain a free energy of the above form and
calculate numerical values for C' and related numerical
constants.

The corresponding results for the free energy Fi (V)
of a compressible membrane of fixed particle number are
obtained by simply setting AA = a2 and r = ff4 in
Egs. (101), (102), and (103), as discussed in subsection
IID.

It has been emphasized in several papers by Porte
and co-workers [42-45] that the symmetry of the Hel-
frich bending energy with respect to scale transforma-
tions imposes some rather strong constraints on the types
of scale dependence which can appear in the thermody-
namic properties of a system of membranes. Porte et
al’s arguments in their original form applied primarily
to a bicontinuous phase comprised of a single multiply
connected membrane. We now show that most of the
information in Eq. (103) can be derived by applying a
similar symmetry argument to the free energy of a single
disconnected surface.

It is convenient, for this purpose, to take definition
(35) for the free energy Fa of an idealized surface of
constrained area as our starting point. This free en-
ergy can, by construction, depend only upon the di-
mensionless parameters « and K and upon the length
scales A1/2, V1/3 AAY2 4, and v. We know from
the mode-counting arguments given in subsections IT A
and IIB that the arbitrary length scale v can appear
in F4 only within a thermodynamically irrelevant term
proportional to A. We know that the partition func-
tion Z4 must be proportional to V. We also know that
Z 4 must be proportional to the magnitude AA of the
range of values over which the area of the membrane is
allowed to fluctuate, as can be seen by applying the iden-
tity 6(A — Ag/AA) = AA §5(A — Ap) to the § function in
Eq. (35). The free energy F4 must therefore depend on
V and AA only via an additive logarithmic contribution
of the form
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§F ~ —TIn(V AA) . (104)

Finally, we know as a consequence of the scale invariance
of the bending energy that the nonextensive parts of F4
must be invariant under a simultaneous rescaling

A= A%A4, AA - NAA,

a—Aa, V-V (105)

of the four remaining length scales in the problem. If we
then assume, based on the results of earlier calculations of
the cutoff dependence of the renormalized rigidities, that
the dependence of the O(T') contribution to F4 upon the
cutoff length a is also logarithmic, but that this depen-
dence can be completely absorbed into a renormalization
of the bending energy, then we are forced to conclude
that, to O(T), the nonextensive part of the free energy
must be of the form

Fa ~ Hg[Xo] - Tln(%) +THR/T),  (106)

where f(x/T) is some dimensionless function of x/T.
This dimensional argument does not give the value of the
coefficient B, that controls the dependence of Hgr upon
the cutoff, nor the form of the function f(x/T), both of
which must be calculated explcitly. What it does tell us,
however, is that the form of the logarithmic dependence
on A in the second term in Eq. (106) is dictated by the
dependence of F)y upon V and A A, together with the re-
quirement that F4 be invariant under an overall length
rescaling of form (105).

ITII. A DILUTE SUSPENSION OF SURFACES

In the preceding section, we considered the free energy
of an isolated membrane of fixed particle number N or
area A. Physical situations in which this quantity is of
interest, however, typically involve not just an isolated
surface, but an equilibrium state of many disconnected
surfaces, such as a vesicle phase, in which the areas of
individual surfaces may fluctuate through the exchange
of surfactant molecules. In this section we use the re-
sults of the previous subsection for the constrained area
free energy of a single surface in order to calculate the
thermodynamic properties of a dilute, polydisperse sus-
pension of surfaces.

We consider a dilute suspension of many surfaces, all of
which are assumed to be of the same topology and equi-
librium shape, and treat the physically relevant case of
spherical vesicles as a special case. The total Helmholtz
free energy density F for a system of noninteracting sur-
faces in a box of volume V is given by the ideal gas free
energy

pF= > Mylln(My)— 1+ Fy(V)],
N=Npmin

(107)

where Fny (V) is the free energy for a single surface of
particle number N whose center of mass is constrained
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to lie within a volume V', and My is the total number of
surfaces of particle number N. The sum in Eq. (107) has
been taken to include only surfaces of area greater than a
cutoff size N,,;n as a way of crudely representing the facts
that the harmonic bending energy used in deriving Fyy
cannot accurately describe the free energy of membranes
of dimensions smaller than some molecular length scale
of order of the bilayer thickness, and that the density of
such very small surfaces will be strongly suppressed by
molecular packing effects. i

We obtain the equilibrium size distribution by min-
imizing Fi,; with respect to My in the presence of a
constraint on the total number of surfactant molecules.
This yields

My (V) = e PENV) TN (108)

where pu, is a surfactant chemical potential that has been
introduced as a Lagrange multiplier to constrain the to-
tal number of surfactant molecules in the system. To
make contact with the description of the membranes as
idealized surfaces, this distribution can be reexpressed as
a differential number density

dp_ 1

B = e AR od)
A Va?

(109)

of surfaces per unit volume and unit surface area, in

which

o= —p,/al (110)
is a chemical potential for the area, or bare surface ten-
sion, and A = Na?. Using Eq. (103) for Fy(V) then
yields

dp (ﬂﬁ)N°/2e—5[HR(R)+a'A] (111)
dA~ RS ’
where Hp(A) is the renormalized bending energy of a
surface of structural length R ~ A'/2, and where
o' =&+ fior (112)
is the difference between the value of the chemical po-
tential o in the system of interest and that in a reference
system consisting of an infinitely large surface fluctuat-
ing about a planar background state, or (equivalently) a
single infinitely large vesicle. The physical state of the
system is controlled by the value of this chemical poten-
tial difference.

As expected, this size distribution depends upon the
cutoff length a only through the cutoff dependence of
the renormalized bending energy Hgr(A) and of the refer-
ence free energy fiot, so that the effects of changes in the
cutoff length can always be absorbed into corresponding
changes in the values of the bare parameters &, &, and o
which are used to produce a given large-scale behavior for
Hg(A) and a given value for ¢’. Similarly, this size dis-
tribution depends upon the length scale v [or A(a)] only
through the trivial v dependence of the reference free en-
ergy fiot, so that changes in v affect only the value of
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the (unobservable) bare parameter o. Finally, we note
that this result is completely independent of the molec-
ular area a2, or any other molecular length, since, as
discussed in subsection IID, the size distribution is iden-
tical to that produced by the model of idealized surfaces
of continuously variable areas.

It can be shown by a straightforward dimensional anal-
ysis that Eq. (111) is actually the only physically al-
lowable form for the area dependence of dp/dA. More
specifically, it is the only form allowable within the con-
text of a model in which the membrane is treated as a
surface of continuously variable area whose shape is con-
trolled by the Helfrich bending energy. We know that
in such a theory dp/dA must be a function of the bend-
ing rigidities, the cutoff length a, the area A, and the
surface tension o alone. The dependence on the sur-
face tension o is determined by the requirement that the
vesicles are in chemical equilibrium with respect to ex-
change of surfactant molecules, and must therefore be of
the trivial form given above. We know that, if physi-
cal quantities such as dp/dA are to remain unchanged
under a coarse-graining transformation (i.e., under a si-
multaneous change of the cutoff length and of the corre-
sponding elastic parameters of the membrane), then the
cutoff length a can appear only within a renormalization
of the bending rigidities, which we expect to appear in a
Boltzmann factor e #Hr(4), The dimensionful prefactor
of A=5/2 is then required by the facts that dp/dA has
units of (length)™®, and that, once the cutoff length a
has been absorbed into a renormalization of the bending
rigidities, the surface size A'/2 is the only other length
scale in the problem. It is this size-dependent prefactor
that has been here obtained by a proper treatment of
finite-size effects and of translational entropy.

In the physically relevant case of spherical vesicles, Eq.
(111) yields a size distribution

dp _ (Br)*

dA ~ CPR1348/3 e~ PlHenalXol+o4}
a

(113)

of the form obtained previously in Ref. [19], where Hy =
Hypend[Xo] = 47(2k + R) is the unrenormalized bending
energy of a sphere, R = /A/4r is the equilibrium ra-
dius, and C, is a numerical constant. Numerical values
for Cp, which depends somewhat upon the form chosen
for the regularization function, are given at the end of
Appendix C. By changing variables from the area A to
the mechanical equilibrium radius R = y/A/4w of the
sphere, and using definition (77) for A,,4(R), one can
rewrite this as a simple expression

dp 1

drR © A% _(R)

und

e-ﬁ[HR(R)-HT'A] (114)

for the number density per unit radius as a function of
the renormalized bending energy Hgr(R) and the length
scale Aynq(R) alone, where A,,q4(R) is proportional to
the rms normal displacement (i.e., the “roughness”) of a
surface of radius R due to thermal undulations.

An alternative way of calculating the size distribution
of an ensemble of surfaces is to treat the area A of each
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surface as a fluctuating internal degree of freedom, which
can fluctuate due to exchange of area elements (i.e., sur-
factant molecules) with a reservoir, and thereby treat
fluctuations of area on the same footing as fluctuations
of position, orientation, and shape. We will briefly sum-
marize this alternative in order to make contact with
an earlier treatment of the vesicle problem by Huse and
Leibler (HL) [18]. We consider the grand canonical par-
tition function

2(V,0) = /D[X] e PlHeena[X]+oA)} (115)
of a single surface whose position is confined to a volume
V, and whose area fluctuates through exchange of ma-
terial with a reservoir of chemical potential —o, where
D[X] denotes the path integral measure for a strongly
fluctuating surface, which is a generalization of the ap-
proximate measure used in Sec. II. This single-surface
grand canonical partition function can be expressed in
terms of the free energy F4(V,AA) calculated above as
an integral

dA

E(V,0) = / A BIFA(VAA) +o4) (116)

AA

Comparing this to Eq. (109) for the size distribution in
a system of many surfaces, we see that

.:(V,a)___/dAd_p

% dA (117)

implying that the integrand in Eq. (116), i.e., the contri-
bution to = from surfaces of a given area, is simply equal
to the total number of such surfaces.

Huse and Leibler, who considered the size distribution
of an ensemble of spherical vesicles, suggested the fol-
lowing simple and intuitively appealing prescription for
the radial size distribution. They noted that the radius
and position of a fluctuating vesicle are “naturally viewed
as uncertain” over distances less than approximately the
thermally induced “roughness,” or rms normal displace-
ment, Aynqg ~ Ry/T/k of the vesicle surface. They then
suggested (to paraphrase) that the grand canonical par-
tition function should thus be given by an integral of the
form

dRV

E(V,0) = [ —aTr

e PHR(R)+o"A] (118)

in which e ~PlHr(4)+¢' 4] i5 ysed as a coarse-grained Boltz-
mann weight, but in which the position and radius of the
surface are effectively coarse grained over a length scale
Auynd, 1.€., in which any two configurations for which the
radii or center-of-mass positions differ by less than A, ,q4
should be regarded as identical within a coarse-grained
sum over configurations. Upon comparing Egs. (118)
and (114), and using Eq. (117) to relate E to the size
distribution, we see that our and HL’s results for the size
distribution are identical.

Most easily measurable properties of a vesicle phase
can be expressed as moments of the size distribution of
the form
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an/ 4 an % (119)

Amin dA’

in which A, = Npina? is a minimum allowable surface
area. Quantities of interest include the total number den-
sity po of disconnected surfaces per unit volume, the total
concentration
c=p1 (120)

of area per unit volume (which is proportional to the
total number density c/a? of surfactant molecules), the
total volume fraction

@ o< p3)2 (121)
of space that is enclosed by the surfaces, and various
higher-order moments that can, in principle, be deter-
mined by scattering experiments [32].

We are interested primarily in the behavior of these
moments in the limit A,,;, < T/o’ in which the sur-
face area T'/o’ characteristic of the exponential falloff of
dp/dA is much larger than the cutoff area A,,;,, so that
our use of a harmonic bending energy remains valid for
surfaces of typical size. Using the explicit size depen-
dence of Hg(R), it is straightforward to show that, in
this limit, all moments of order n > B, + 3/2 will be
dominated by surfaces of area A ~ T'/o’, and will vary
with o' as

n—3—-B,
pr o @23 (A_;,> z o~ HoenalXo)/T (122)
a
where
A, =T/o" . (123)

Moments of order n < B, + 3/2, however, will be domi-
nated by surfaces of area A ~ A,,;n, and thus will depend
sensitively upon the value of A,,;,.

For the physically relevant case of spherical surfaces,
for which B, + 3/2 = 1/6, this implies that the enclosed
volume fraction ¢ and area density ¢ will remain conver-
gent in the limit A,,;, — 0, but that the total number
density po of disconnected surfaces will not. The depen-
dence of the characteristic area A, upon the total sur-
factant concentration can thus be obtained by using Eq.
(122) to calculate ¢ as a function of o and then inverting
to obtain

Ay ~ a?(c a eflo/T)8/5

(124)
The predicted A, x ¢85 dependence of the average sur-
face size upon concentration is probably the most easily
testable and sensitive prediction of this theory, since the
value of 6/5 for the exponent depends directly upon the
value obtained for the prefactor of the logarithmic con-
tribution to the single-surface free energy F. Models
which ignore all logarithmic contributions to Fy instead
yield A, x c¢'/2, and models which take into account
the renormalization of the bending energy but ignore all
other logarithmic contributions yield A, oc ¢3/19,
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The total volume fraction ¢ o p3/2 enclosed by an en-
semble of spherical surfaces can be expressed, according
to Eq. (122), by a simple Boltzmann weight

¢ o e PHR(4-) (125)
in which A, depends implicitly upon the surfactant con-
centration via Eq. (124). This expression for ¢ leads
immediately to the conclusion that the value of surfac-
tant concentration for which an initially dilute suspen-
sion of surfaces will begin to overpack (i.e., for which
¢ approaches unity) is roughly equal to that for which

the vesicles have grown to an average radius R o A},/ 2
such that the renormalized bending energy Hg(A,) for a
sphere of this size vanishes. Increasing the concentration
much beyond this overpacking concentration is believed
to lead to a transition to a lamellar phase [22,23,19,20],
with a lamellar spacing d at the transition that is of the
order of the radii of the vesicles in the competing vesicle
phase. The conclusion that Hr(R ~ d) is nearly vanish-
ing near this transition is consistent with the simple idea
that, upon dilution, the lamellar phase should become
unstable towards the formation of vesicles at roughly the
lamellar spacing d for which the renormalized bending
energy of a sphere of size d vanishes, as discussed previ-
ously in Refs. [23,19,20].

The total Helmholtz free energy of a dispersion of sur-
faces can be obtained by substituting the equilibrium size
distribution back into Eq. (107). Doing so yields a total
Helmholtz free energy per unit volume (measured rela-
tive to a reference state consisting of a planar fluctuating
surface) of

F|V = =T[po + o'p1] (126)
For the physically relevant case of spherical surfaces, the
number density of vesicles pg is much larger in the limit
Ain € A, of interest than the quantity op;, and is
dominated by the contributions of very small vesicles, of
area A ~ Anin, even though most of the area of the
system is in much large surfaces, of area A ~ A,. This
leads to a free energy density

F/V >~ —Tpo
~_ T  —HyT
T AV g8/3

min

(127)

of roughly —T per vesicle. This free energy density is
approximately independent of the value of o, and thus
independent of the total concentration c, throughout the
region of validity of Eq. (127), that is, for all concen-
trations high enough so that A, > A, but low enough
so that ¢ S 1, so that the vesicles can be regarded as
dilute. At higher concentrations, the free energy density
of the vesicle phase is expected to rise rather sharply due
to packing constraints, thus leading to the transition to
a lamellar phase.

One unexpected feature of the above analysis is the
observation that, for spherical vesicles, certain physical
quantities (i.e., the number density of vesicles and the
free energy density) are divergent in the absence of a
lower cutoff on the surface area. It is interesting to ask
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whether this behavior will also appear in systems involv-
ing surfaces of more complicated topology. The conver-
gence or divergence of a given moment p,, depends upon
both the order n of the moment and the value of the
coefficient B, for the surfaces of interest. Because X is
assumed to be the surface that minimizes the bending en-
ergy for a given topology, a single equilibrium shape and
a single value of B, can in principle be specified for each
topology. An upper bound can be placed on the value of
B, for a specified topology by using the Gauss-Bonnet
theorem [dA K = 4m(1 — g) (where g is the number of
handles) to evaluate the term in Eq. (57) involving the
Gaussian curvature K, and by noting that the remaining
term proportional to [dA C? is always negative. The
resulting inequality,

B.<i(i-g) , (128)
is sufficient to guarantee that B, < —3/2 for all surfaces
of genus g > 2, and thus that for these high-genus sur-
faces all moments of order n > 0 will remain convergent
in the limit A,,;, = 0. The equilibrium shapes for the
remaining cases of low-genus g = 1 (toroidal) and g = 0
(spherical) surfaces are known, so that values of B, can
be easily calculated, and yield B,+3/2 = —(3/2)(7—1) <
0 for toroids and B, + 3/2 = +1/6 > 0 for spheres. We
thus conclude that B, + 3/2 < 0 for all surfaces with
genus g > 0, and, consequently, that all moments of or-
der n > 0 will thus be convergent in the limit A,,;;, — 0
for all surfaces of nonspherical topology. This divergence
of the number density of surfaces thus appears to be pe-
culiar to spheres.

IV. LINEAR MICELLES

Many of the issues raised here regarding the relation-
ship between internal and collective modes of a flexible
aggregate have been raised previously, but not satisfac-
torily answered, in the context of discussions of rodlike
micelles. A long, rodlike or wormlike micelle has in com-
mon with a closed two-dimensional membrane the math-
ematical property that, in the absence of conformational
fluctuations, its free energy can be approximated as the
sum

Fo(N) = Npoo + A (129)
of a term proportional to the number of molecules NV in
the micelle, where p., is the free energy per molecule
for an infinitely long micelle, plus a length-independent
contribution A. The contribution A arises in a rodlike
or wormlike micelle from the defect energy associated
with the two ends of the micelle, where the surfactant
molecules are packed in a different, and presumably less
favorable, environment than in the body of the micelle.

The size independence of the nonextensive part of the
free energy makes the thermodynamic properties of a so-
lution of rodlike micelles, like those of a solution of vesi-
cles, extremely sensitive to the presence of any logarith-
mically size-dependent entropic contributions to the free
energy. It has been noted by McMullen, Gelbart, and
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Ben-Shaul (MGB) [28] that, if the free energy of a rodlike
micelle is formally decomposed as the sum of an internal
free energy plus a sum of center-of-mass translational and
rigid rotational factors, then the translational and rota-
tional contributions will, like those of a closed membrane,
introduce free energy contributions that vary logarithmi-
cally with the size of the micelle. If the remaining internal
free energy of a rodlike micelle with constrained center-
of-mass position and constrained orientation is assumed
(incorrectly, as we will show) to be of the form (129),
then one obtains a free energy for the unconstrained rod
of the form
Fn(V) >~ Npoo + oTIn(N) + A —T'In(V) (130)
where V is the volume of some region to which the center
of mass is confined, and where o = —5 in the MGB
model, in which the micelle is treated in essence as a
rigid rod with rotations about all three principal axes.
The average aggregation number N obtained from a free
energy of form (130) is found to vary [28,23] as
N o pyo ™ (131)
with changes in total concentration p;.¢, which yields an
extremely slow
Nues « pily (132)
growth with concentration in the MGB model. Our ex-
perience in the preceding sections with the problem of
a closed membrane suggests, however, that it is possi-
ble for logarithmic contributions to the remaining inter-
nal free energy of such an aggregate to reduce or, as in
the case of a spherical vesicle, even reverse the sign of
the logarithmic size dependence which would be derived
from comnsideration of the collective modes alone. A de-
tailed thermodynamic analysis by Missel et al. [29] of
dynamic light scattering experiments on suspensions of
rodlike sodium dodecyl sulfate micelles showed, more-
over, that the concentration dependence of the measured
hydrodynamic radius can be fitted quite well by assuming
a free energy of form (130) with no logarithmic contribu-
tion, i.e., with a = 0, which yields an average aggregation
number that varies as
Ne:nperiment x p:({tz (133)
with concentration.

In order to clarify the relationship between internal
and collective degrees of freedom of a one-dimensional
aggregate such as a micelle, we consider a simple, exactly
solvable model of the micelle as a one-dimensional collec-
tion of beads and springs. In considering such a model,
we assume that it is not necessary, in order to obtain
the correct logarithmic contribution to the free energy,
to have an accurate molecular model of the micelle, but
that it is sufficient to give a rigorous treatment of the
internal degrees of freedom within a simple phenomeno-
logical model. We consider here a string of N particles
with positions x; (¢ = 1,...,N) that are connected into
a chain by an elastic energy of the form
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N N-1
H=Y v(r)—rY #i-fiy1 (134)
i=2 i=2
in which r; = x; — x;_1, r; = |r5], £ = v/, K is a

dimensionless bending rigidity, and v(r) is an arbitrary
two-body potential. The corresponding partition func-
tion is written as

N
d3z;
— t —BH[x
Zn = H/ve .
=1

where A is the thermal de Broglie wavlength for a sin-
gle particle. The above model is sufficiently general to
interpolate between the limit of a very rigid rod, which
is described by taking v(r) to have a sharp minimum at
some nonzero preferred bond length » = a and taking &
to be large, and of a completely flexible Gaussian chain,
which is described by taking x = 0 and taking v(r) to be
a harmonic potential with a minimum at » = 0.

The above partition function can be evaluated exactly
by an iterative procedure of integrating over the positions
of successive monomers. Integrating first over monomer
N, while holding the other N — 1 positions fixed, yields
a multiplicative factor

(135)

d31" —B[

=3¢

v(r)—Kz-F)

(136)

where Zz is an arbitrary unit vector. Because the three-
body term in Hamiltonian (134) was chosen to couple
only the directions, and not the magnitudes, of neigh-
boring bond vectors, this factor is independent of the
bond vector connecting particles N —1 and N — 2. Con-
sequently, the procedure can be repeated iteratively to
remove the first NV — 2 particle on the chain, giving a
multiplicative factor of g, for each particle, and eventu-
ally leaving two particles interacting through a two-body
potential v(r) alone. Integrating over the positions of
these remaining two particles then gives a total partition
function

Z = (V/A3)goqgN 2

K

(137)

where g is the value of ¢, evaluated with x = 0, and V'
is a volume to which the position of the end particle is
confined. This gives a total free energy

F = -TNIn(qs) + Tln(g2/g0) — TIn(V/A%)  (138)

for the freely rotating and freely translating chain that
contains only extensive and N-independent contribu-
tions, but no logarithmic contribution, in complete agree-
ment with the experimental results of Missel et al. [29].
This result does not depend upon any assumptions about
the degree of flexibility of the micelle (i.e., the magnitude
of k), and thus applies equally well to rodlike and worm-
like systems.

The underlying reason for the absence of logarithmic
terms in Eq. (138) is the separability of the free energy
for a one-dimensional system with free ends. The par-
tition function of a long, one-dimensional aggregate for
which the position and (for a semiflexible aggregate) the
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orientation of one end are constrained can be divided
at any point along the chain into the product of cor-
responding constrained partition functions for the two
segments that meet at the chosen point. This property
implies that the total free energy of such an aggregate
can contain only an extensive contribution and a size-
independent contribution arising from the existence of
the two ends.

If, however, following MGB, one insists on using a con-
ventional center-of-mass coordinate system to formally
decompose the partition function of a rodlike micelle into
a product of translational, rotational, and internal fac-
tors, then the absence of a logarithmic term in this ex-
act result for the total free energy must be intepreted
as the result of an exact cancellation between the calcu-
lated logarithmic dependence produced by the transla-
tional and rotational contributions and an inferred loga-
rithmic finite-size contribution to the remaining internal
fluctuation free energy of a micelle with a fixed center-
of-mass position and fixed orientation.

That this exact cancellation is a rather special property
of quasi-one-dimensional aggregates with free ends can
be shown by considering the free energy of a completely
flexible, one-dimensional ring polymer. The free energy
of such an object is easily shown to exceed that of a
corresponding polymer with free ends by a contribution
of order

AFying ~ STIn(N) , (139)
which is simply the free energy cost associated with forc-
ing a three-dimensional random walk to return to its ori-
gin, and which yields a total free energy with a logarith-
mic scale dependence. Similarly, no such cancellation was
found for the closed two-dimensional surface considered
in Sec. II.

One essential physical assumption made in the above
is that the micelle is flexible enough so that its longest-
wavelength undulation modes can be treated using clas-
sical, rather than quantum mechanical, statistical me-
chanics. The free energy will reduce to that of a truly
rigid rod, as assumed by MGB, only in the case of a
rod in which the longest-wavelength internal degrees of
freedom are quantum mechanically frozen out, i.e., in
which their quantum mechanical excitation energies be-
come large compared to 7. This situation is rather un-
likely to be realized for a large, comparatively weakly
bound aggregate such as a micelle, but can be realized
for, e.g., a covalently bound diatomic molecule.

V. SUMMARY AND CONCLUSIONS

In the above, we have calculated the size-dependent
free energy of a closed undulating membrane, such as a
spherical vesicle, and derived the size distribution of a
dilute suspension of such surfaces.

Focusing first on the effects of undulations, we used
a simple mode-counting argument to show that the un-
dulation contribution F,,q to the free energy of a single
surface contains, in addition to the previously calculated
logarithmic contributions arising from the renormaliza-
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tion of the bending rigidities, a universal “finite-size”
contribution of magnitude

R2
(sFund jad TNO In (—5) , (140)
v

in which R is a structural length, v is an arbitrary config-
urational space measure, and in which Ny is the number
of Goldstone modes of the surface (i.e., translations, ro-
tations, and polydispersity) for which the bending energy
provides no restoring force. The explicit dependence of
this contribution upon the number of such zero modes
was given a simple physical interpretation in terms of a
loss of undulation entropy of order In(R?/v?) per collec-
tive mode, due to the destruction of one long-wavelength
undulation mode for each collective mode created.

After taking into account the effects of overall trans-
lations, we find that the nonextensive part of the total
free energy of a spherical surface whose center of mass is
confined to a region of volume V and whose area is al-
lowed to fluctuate over a narrow range of values between
A and A + AA has a scale dependence of the form

(141)

FAzHR(R)—Tln( VAR )

A3nd(12)

where Hgr(R) is a renormalized bending energy for a
sphere of equilibrium radius R o« (4/47)Y/2, AR =
AA/(87R) is the variation in radius which is induced
by a variation of magnitude A A in area, and

Aund(R) ~ R\/T/x

is a length scale of order of the thermal “roughness” of
the vesicle’s surface R due to thermal undulations. The
corresponding results for an asymmetric surface (e.g., a
toroid) would differ only through the addition of free en-
ergy contributions of order T In(x/T) due to the presence
of nontrivial rotation modes. The free energy for a phys-
ical membrane containing a fixed, integer number N of
surfactant molecules is obtained by setting the arbitrary
parameter AA equal to the average area a2 = A/N oc-
cupied by a surfactant molecule within the membrane.

By using the above results for the single-surface free
energy to describe a dilute phase of noninteracting spher-
ical vesicles, we obtain a number density of surfaces per
unit volume and unit radius of the form

do 1
dR A 4(R)

(142)

e~ Hr(R)+o'A)/T

(143)

in which ¢’ is a chemical potential for the area defined
relative to that in a reference state given by a system
consisting of a single infinite surface. This is completely
identical to the form assumed by Huse and Leibler [18],
but differs from that used in a number of other treat-
ments of the vesicle phase [21,14,22,8] in which it was
assumed that either dp/dA or dp/dR was given by the
simple Boltzmann factor e [Hr+oAl/T  without the R-
dependent prefactor found here. The size dependence
of this prefactor is precisely that which is necessary to
allow dp/dR, which has units of (length)™*, to be ex-
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pressed as a function of the renormalized bending en-
ergy and the radius of the surface alone, as expected
on physical grounds. The obvious physical interpreta-
tion of this result is the one originally proposed by Huse
and Leibler: that the renormalized bending Hg(A) of a
disconnected surface should be interpreted as the coarse-
grained Hamiltonian (i.e., free energy) for a surface whose
position and radius are left uncertain (i.e., are allowed to
vary) over distances of the order of the typical roughness
R+/T/k of the surface due to thermal undulations. The
contribution of the present analysis has been to put this
idea, which was originally proposed on purely heuristic
grounds, on a firm footing by deriving it from a quasimi-
croscopic treatment of the Helfrich Hamiltonian. The
crucial element in this analysis has been a clarification of
the role of finite-size contributions to the undulation free
energy in determining the final size distribution.

Upon taking into account the scale dependence of both
Hp(A) and Aynq(R), Eq. (143) yields a size distribution
for a dilute phase of spherical vesicles of the form

dp 1 —[Ho+o'ayT

R~ —R4/3e s (144)

where Hy = 47(2k + R) is the unrenormalized bending
energy of a sphere. The divergerice at small radii is the
result of the dominant influence of the finite-size contri-
bution to Fy,q, and must be cut off by the introduc-
tion of some sort of lower cutoff on the vesicle radius.
This result is quite different from that of several earlier
models [21,14,22,8] in which the algebraic prefactor was
assumed to arise only from the renormalization of the
bending rigidities, which by itself would yield a prefactor
that vanishes algebraically at small R, thus producing a
broad peak in the distribution at radii of order /T /o".
The above size distribution yields a typical vesicle radius

R ~ /T/o’ that grows as

R o 3/ (145)
with changes in total surfactant concentration ¢, in con-
trast to earlier predictions [22,8] of a much weaker R
¢3/20% concentration dependence.

What can these results tell us about the existing ex-
periments on vesicle phases? To date, dilute, thermody-
namically stable phases of unilamellar vesicles have been
observed in at least three classes of systems:

(i) mixtures of cationic and anionic surfactants with
brine [5],

(ii) mixtures of ionic surfactants and alcohol cosurfac-
tant with brine [7,8], and

(iii) a single example of a quasibinary mixture of sur-
factant (the ganglioside GM3) and brine [6].

Two distinct sets of theoretical ideas have been pro-
posed to explain why equilibrium vesicle phases might
be formed.

(i) “Enthalpic stabilization”—by this we mean any
mechanism in which a bilayer will bend spontaneously
in order to minimize its internal free energy. The most
important such mechanism is the one proposed by Safran
et al. [46], in which it is suggested that the free energy of a
two-component bilayer may sometimes be minimized by
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a state of nonzero preferred curvature, due to the spon-
taneous formation of different chemical compositions in
the top and bottom monolayers.

(ii) “Entropic stabilization”—this is the phenomenon
described in this paper, in which the internal free energy
of the bilayer is assumed to be lowest in a flat conforma-
tion, but in which vesicles can nonetheless be formed at
sufficiently low surfactant concentrations and low rigid-
ity due to the combined effects of translational entropy
and renormalization of the bending elasticity.

The thermodynamic behaviors predicted from these
two kinds of model differ qualitatively in the form of the
predicted vesicle size distribution and, most importantly,
in the predicted variation of the average vesicle size un-
der changes in total surfactant concentration pso;. In an
enthalpically stabilized vesicle phase, for which there is
some preferred vesicle radius set by the curvature that
minimizes the internal free energy per molecule of the
membrane, one expects a size distribution with a peak at
or near this preferred radius, and, consequently, an aver-
age radius that changes very little with changes in pso:.
In contrast,- the above analysis of an entropically stabi-
lized phase predicts a broad distribution of sizes peaked
at some microscopic cutoff size, and an “average” radius
R o« /T/o (as given experimentally by, e.g., the ratio
of the enclosed volume fraction to the surfactant con-
centration c) that, when R is substantially larger than
the cutoff size, should vary comparatively rapidly with
changes in concentration.

Of the three classes of vesicle-forming systems men-
tioned above, it is only for the first two (cationic-
anionic surfactant mixtures and surfactant-alcohol mix-
tures) that enough data exist to allow a meaningful com-
parison of theory and experiment. The properties of the
GM3-brine system have been studied [6] by light scatter-
ing only at a single concentration, for which the vesicle
phase was found to coexist with a more concentrated
(possibly lamellar) surfactant phase. Thus no informa-
tion exists regarding the variation of vesicle size with
concentration.

The various systems of mixed cationic-anionic vesicles
studied by Kaler et al. [5] have been found to exhibit
average radii of R ~ 200-800 A that, for fixed relative
concentrations of the two surfactant species and concen-
trations and at concentrations above the critical micel-
lar concentration of both species [47], seem to be nearly
independent of total surfactant concentration. Prelimi-
nary measurements of the size distribution by analysis
of freeze-fracture images seem to exhibit a peak centered
near this average size. The behavior of these systems thus
seems to be broadly consistent with that expected for an
enthalpically stabilized phase. This conclusion is consis-
tent with the analysis of Safran et al. [46], whose theo-
retical work on enthalpically stabilized mixed-surfactant
systems was motivated by the existence of these systems.

Our own interest in vesicle phases was originally mo-
tivated by the work of Hervé et al. [8] on an equilibrium
vesicle phase found in a mixture of an ionic surfactant
[sodium dodecyl sulfate (SDS)], an alcohol (octanol), and
brine. A unilamellar vesicle phase is found to exist in this
system within a very narrow range of relative concentra-
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tions of surfactant and alcohol, and within a range of
surfactant concentrations between a few hundredths of
a percent and 4% by weight, above which the enclosed
volume fraction approaches the close-packed limit of 60—
70 % ‘and the system begins to form multilamellar vesi-
cles. A measurement of the radial size distribution of
vesicles, as determined from freeze-fracture images at 2%
concentration, indicated the existence of a broad peak
centered at a radius R ~ 350 A with a strongly sup-
pressed density of vesicles for R < 200 A. By fitting the
variation of the enclosed volume fraction (as extracted
from conductivity measurements) with surfactant con-
centration to a power law form for surfactant concentra-
tions of 0.1-1.0 % by weight, Hervé et al. found that the
average vesicle radius R varies as R oc ¢%95%05 je. that
it shows little or no dependence on concentration. Sim-
ilarly, dynamic light-scattering measurements yielded a
hydrodynamic radius of 700100 A that was also found
to show no noticeable variation with concentration. This
is in strong contrast to the R o« ¢3/% behavior predicted
above, which predicts a variation of R over roughly a fac-
tor of 4 when c is varied over a decade. This observed
behavior is thus clearly incompatible with that predicted
for a dilute entropically stabilized phase of large surfaces,
and is actually much more consistent with that expected
for a system with an enthalpically preferred vesicle size.
The original analysis of the SDS-octanol vesicle phase
by Hervé et al. [8] as an entropically stabilized system
was based upon an earlier, and flawed, model of such a
system.

We wish to suggest two possible explanations for the
behavior observed by Hervé et al. First, it is possible
that the vesicle phase is stabilized in this system by an
enthalpic mechanism similar to that proposed for the
mixed surfactant membranes, in which the surfactant and
alcohol could partially demix within the membrane to
produce top and bottom monolayers with slightly differ-
ent chemical compositions. Such a spontaneous phase
separation of alcohol and surfactant would, however, be
completely unexpected, since the addition of an alcohol
cosurfactant has thus far been assumed to modify the
elastic properties of a membrane but to leave unchanged
the validity of a description of the bilayer in terms of a
simple Helfrich bending energy. Alternatively, it is also
possible that the vesicle phase is entropically stabilized
but that the effects of anharmonic contributions to the
bending energy, which we have mimicked above through
the use of a lower cutoff on the allowed range of vesi-
cle sizes, are much larger than one might naively expect,
and are large enough to produce an effective lower cut-
off radius of about 200 A. The existence of such a large
cutoff radius could (if the number density of vesicles was
sufficiently high, as would be caused by a low value for
the harmonic bending energy) cause the average radius
to remain near this cutoff value throughout the range of
concentrations for which the system remains dilute.

For the sake of simplicity, we have restricted our-
selves in the above to bilayer membranes, or monolayers
with zero spontaneous curvature. Essentially identical
considerations apply, however, to droplet microemulsion
phases, for which there is a much larger body of experi-
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mental data. Future work [33] will aim to clarify the in-
terpretation of experiments that attempt to extract the
monolayer elastic parameters, and particularly the value
of the Gaussian rigidity &, from measurements of various
thermodynamic properties of droplet microemulsions.
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APPENDIX A: REGULARIZATION ON A
CURVED SURFACE

In this Appendix, we consider the problem of choosing
a regularization operator ¥ for use on a curved surface.
We begin by considering the physical requirements that
our choice of ¥ should, if possible, satisfy.

Any proposed choice for ¥ can, as an operator in the
Hilbert space of functions on the surface Xg, be repre-
sented in coordinate space as a function ¥(o,0’) of two
positions on this surface. On a flat surface, where ¥
is chosen to be diagonal in a basis of plane waves, the
function ¥(o,0’) can always be expressed as a localized
function ¥(|o — o’|/a) of the separation between points
o and o', where ¥(|oc — o|'/a) is simply the 2D Fourier
transform of lil(qzaz) with respect to ¢q. Similarly, we ex-
pect that on a curved surface ¥ (o, ') will continue to be
a localized distribution function for which the value of
U(o,0') is large only for points separated by a distance
|o — 0’| < a. The additional physical conditions which
must be satisfied by this distribution function can, we
now argue, be expressed by requirements that

1

/dA U(o,0')

1
U(0,0")|o=or = -

1, (A1)
(A2)

for all o and o', where dA = d%0,/g is the surface element
for point o.

The first condition, Eq. (Al), is simply an expres-
sion of the requirement that, if the operator ¥ is not to
affect the contributions of very-long-wavelength undula-
tions, it should act like the unity operator (i.e., like a
6 function) when convoluted with height functions that
vary smoothly over distances large compared to a. This
immediately yields the above requirement that ¥ should
have the same normalization as a é function. On a flat
surface, this is simply equivalent to the requirement that
the function ¥(g2a2) should approach unity for vanish-
ing g, since only the uniform ¢ = 0 component of ¥ (o, o”)
contributes to the integral in Eq. (Al).

The second condition, Eq. (A2), is an expression of
the requirement that the local.effective patch size, as de-
fined by the local area per independent degree of free-
dom, be spatially homogenous and everywhere equal to
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some specified value a?. The identification of 1/¥ (o, o)
as the appropriate definition of the local effective patch
area follows immediately from the coordinate space rep-
resentation

N= /dA ¥(0,0") |0 (A3)
of the trace in Eq. (46), in which the total number of
modes N is expressed as the surface integral of a local
mode density given by ¥(o,0). On a flat surface, this
condition simply yields Eq. (47) for the mode density on
such a surface.

The most natural generalization of the regularization
scheme used on a flat surface is obtained by defining
¥ on a curved surface to be an operator function ¥ =
U(—V2a?) of the Laplacian operator V2 for the surface
in question. This form for ¥, which we will call ¥, 4;ye,
can be expressed as an expansion

Vraive(0,0") = Z ¢p(0) ¥ (q5a%)h(0") (A4)
B8=0

in a basis of eigenfunctions of the Laplacian which satisfy

—V2¢p(0) = a5¢s(o)

where the generalized “wave numbers” appearing in
‘Il(qgaz) are defined in terms of the corresponding eigen-

(A5)

values of V2, and where, as elsewhere in this article, we
will assume that the form of ¥ has been chosen to satisfy
Eq. (47) on a flat surface with a cutoff parameter b = a.
The above form of ¥ is the one used in essentially all
previous calculations [13-15], and is the most practical
choice for calculation.

We now consider whether an operator of form (A4)
can satisfy Eqs. (A1) and (A2). An operator of this form
will satisfy condition (A1) as long as \il(qgaz) approaches
unity as gg approaches zero, since, as on a flat surface,
only the uniform gz = 0 component of ¥,,4;,. contributes
to the integral in Eq. (A1l). To determine whether an op-
erator of this form can also satisfy Eq. (A2), we consider
a specific form

Unaive(7,0") = Y ¢ (0)dp(0’)e™ %"/ (A6)

for ¥, in which \il(m) is an exponential, so that ¥ is sim-
ply the diffusion propagator for the surface of interest,
where b? is proportional to an imaginary diffusion time.
The behavior of this function in the physically relevant
limit @ < R corresponds to the “short-time” behavior of
the propagator, which has been discussed previously in
the mathematical and field-theory literature [15,48,49].
It is known [15] that the desired value ¥(o,0) can be
expressed in the limit a < R as an expansion

1 K(o)

lI’nai've(a'a U) = E + 127

e, (A7)

in which the first nontrivial term is proportional to the
local Gaussian curvature. Integrating with respect to
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area then gives a corresponding total number of degrees
of freedom

A 1
Nnaive—p-F-lz—ﬂ_/dAK—f--" (A8)

that differs by a number of O(1) from that expected on
a flat surface of equal area.

This curvature dependence of ¥(o,0) can be under-
stood in terms of the modified relationship between area
and distance on a curved surface: The locus of points
that are within a fixed distance b (as measured along a
geodesic) of a point ¢’ has a slightly smaller area on a
surface of positive curvature K, such as a sphere, than
it does on a flat surface, and a slightly larger area on
a surface of negative K, such as a saddle point. Corre-
spondingly, there is somewhat less area for the diffusion
propagator to explore on a surface of positive K after a
given “time” a2, and so the propagator remains slightly
more localized on such a surface than on a surface of
zero curvature, leading to a larger value of ¥(o,0) and a
smaller effective patch area.

We now show that the curvature dependence of ¥ (o, o)
found above is not specific to the diffusion propagator,
but is instead a general property of operators of the form
W, aive- To do this, it is useful to construct a representa-
tion of N as an integral over contributions with different
wave numbers rather than as a surface integral. We de-
fine a density of states per unit area

pw) = 5 36w —ad) (A9)
B

as a function of the squared wave number w = ¢%2. We
can express NN in terms of this quantity as an integral

Naive = A /0 " dw p(w) B (wb?) (A10)

In the limit of an infinite planar surface, it is straight-
forward to show that p(w) approaches an w-independent
constant

. 1
Jim o) = - (ar)
for all w > 0. On a curved surface with typical radius
of curvature R, the behavior of p(w) depends upon the
ratio of the wavelength ¢! of interest and the structural
length R. For ¢R > 1, the membrane appears nearly
flat over the length scales of interest, and p is expected
to approach the value 1/(4m) characteristic of a planar
surface. For ¢R < 1, however, the nontrivial structure of
the surface X can strongly affect the spectrum of V2,
and so the density of states can deviate significantly from
that of a planar surface. If we assume that the deviation

1

é = - Al2
p(w) = pw) — o (a12)
from planar behavior is significant (i.e., of order unity)

only for wave numbers ¢ < R™!, we can rewrite N as
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Noaine ~ % +A / dw Sp(w) (A13)
0

where we have used the assumption that dp(w) is signif-
icant only for long-wavelength modes, and the fact that
¥(ga) — 1 for wave numbers ga < 1, in order to remove
the ¥ dependence of the second term on the RHS. By
equating expressions (A8) and (A13) for IV, we see that,
at least for the diffusion operator,

L faak = A/ dw Sp(w) - (A14)
0

127

The fact that the RHS of this equation is actually in-
dependent of our choice of ¥ then implies that the
curvature-dependent contribution to N found in Egs.
(A7) and (A8) must also be independent of the form of
U, and is not specific to the diffusion operator alone.

‘The existence of this curvature dependence of the naive
density of modes implies that the use of the same naive
regularization operator on different surfaces can yield dif-
ferent effective patch areas, thus making it unphysical
to compare the corresponding naive free energies. This
problem is similar in some respects to the one discussed in
Ref. [35], in which the authors carry out a Monge-gauge
treatment of a membrane fluctuating about a planar equi-
librium, and show that the most obvious cutoff scheme
gives a local patch area that varies with the instanta-
neous orientation of the surface. The most conceptually
straightforward way of fixing such a problem, and the
one we will use here, is to invent a modified regulariza-
tion scheme that, to the required accuracy, does preserve
the local patch area. To do so, we define a spatially in-
homogeneous cutoff parameter

Al
127 (A15)

2
b2(0) = a2 [1 + 2 K@)+ ]
that gives the value of the parameter b which would yield
the desired value of ¥,,4;.(0,0) = 1/a? at some specified
point 0. We then formally define a modified operator
T = U (-b2V?) (A16)
in which we simply replace the parameter a? appearing in
U hqive by the spatially varying function b2 defined above.
This simple substitution of a function for a parameter
makes sense because the inhomogeneous part of b%(o) is
both very small and very slowly varying over distances
of order a, so that the quantity 42(c) can to a very good
accuracy be treated as a constant in determining its effect
upon the rapidly varying function ¥(o,0’).
In order to calculate with this operator, we simply
Taylor-expand it as power series in a2K (o). Expanding
to first order as

U =V, 4ive + 0¥, (A17)
we obtain a correction term
~ 1K
5T = — ' (—V2a2) L 2 A1l
¥(-v?a?) V7, (a18)
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in which ¥’ denotes the function ¥’ (z) = d¥(z)/dz. To
calculate the free energy, we make a corresponding ex-
pansion

Fund = Fnaive +6F (Alg)

as the sum of the naive free energy Fl,:ve, calculated
using ¥ = ¥, 40 and b = a, and a correction term

_T. . v
6F = L [m(L%T) w]
involving 4.

We now extract the dominant behavior of 6 F in the
limit @ < R. Because of the extra factor of a?K that
appears in definition (A18) for §¥, the corresponding
correction 6 F,,4 to the free energy is smaller by a factor
of O(a?/R?) than that given by Fjg;,c. As a result, we
need consider only the dominant contribution to Fyn4,
which is R independent, and which is dominated by the
contributions of short-wavelength modes, with ¢ > R™!.
This dominant contribution to 6F,,q can be obtained
by treating K as a slowly varying quantity and treating
the eigenfunctions of V2 locally as plane waves, giving a
contribution

(A20)

6fund [14
8a? 127

§Fyna = dAK (A21)

It is clear from the dependence of the above upon the
Euler characteristic [ dAK that this free energy contri-
bution can be regarded as a contribution to the renor-
malization of K. As we show in Appendix B, it is the
existence of this contribution that accounts for the dif-
ference between the value of @ = 4 originally obtained by
Kleinert [14] for the renormalization coefficient of & and
the (correct) value of @ = 10/3 obtained by David [15].
It is straightforward to show that this value for § Fy,pq4
could also have been obtained by the simpler procedure
of using the naive form for the regularization operator
but choosing the value of the global parameter b so as to
give the correct total number (rather than local number
density) of modes for each surface. By conserving the
local density of modes, we have thus been somewhat more
careful than was strictly necessary, since the correct final
answers for B, and B, can apparently be obtained by the
use of any cutoff scheme that keeps the total number of
degrees of freedom proportional to the area of the surface.

APPENDIX B: CALCULATION OF F,.q

In this Appendix, we carry out an explicit calculation
of the undulation free energy F,,q for a general closed
surface. Our calculation proceeds by two steps. We first
calculate an undulation free energy Fjqive Which is de-
fined by using a naive regularization operator of form
(A4) in Eq. (43). We then calculate the correction term
6F .4 defined in Eq. (A20) and add this to Fraive-

To calculate F),4ipe, We first assume that it, like F,.q,
can be expressed as an expansion of the form
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Fnaive un 2 2
__=AQ+B;1n(R )+B'ln<R )+c’
T T a? D2

(B1)

where By, B), and C’ are scale-independent constants,
and where Fj,4;ve and fyng are evaluated with b = a.

We calculate the coefficient B!, by comparing the de-
pendence of Egs. (43) and (B1) upon the parameter o, as
done in subsection II B to determine the parameter B, in
the physical free energy Fl,,q. Expansion (B1) depends
upon ¥ through an additive contribution

A
6Fna'ive = T(E - BII/) ln(]}z) ) (B2)
whereas definition (43) contains a corresponding contri-
bution

6Fnaive = TNund ln(ﬁz) ) (B3)
where Nynd = Npgive — Np is the number of undulation
modes obtained with a naive regularization. Equating
these two contributions, and using Eq. (A8) for N, aive,
gives a coefficient

1

B, = Nog— —

Tom (B4)

This coefficient differs from the value of Ny predicted in
Sec. IIB precisely because the naive regularization used
to calculate it gives an area per degree of freedom which
depends upon the curvature of the surface, as discussed
in Appendix A.

To calculate the coefficient B; we must examine the
dependence of Fiqive upon the cutoff . This can be ac-
complished by examining the derivative of Fund with re-
spect to a, as done in several previous treatments [13-15].
We first expand the logarithm in Eq. (43) in powers of
the curvature-dependent contributions to the operator £
defined in Eq. (41). Keeping only those terms that con-
tribute in the limit b/ R — 0, we obtain an expansion

Froive = %Tr'[ In(V*5*)¥ |

T

L”VV
/
+2Tr

V4\IJ

+ T'(const) (B5)

The first term in the above can be shown to diverge as
A/a?, yielding the extensive contribution in Eq. (B1),
while the second term yields the In(R/a) contribution.
To obtain the coefficient of this logarithmic term, we dif-
ferentiate Eq. (B5) with respect to a2, which appears
only in the weighting function 7, yielding an expres-
sion that is dominated by the contributions of modes
of wave number ¢ ~ a~!. By approximating these short-
wavelength modes locally as plane waves, thus converting
the trace to a Fourier integral, and treating £ (c) as a
slowly varying function of position, we obtain

aFnaive afund

8z~ 4 aa2

dA LY (o )/ (;2’)“21}1} &'(k?), (B6)

5941

where k = qa, k = k/k, and ¥'(x) = d¥/dz. Compar-
ing Egs. (B1) and (B6), we identify the second term in
(B6) as the coefficient Bj, and use the explicit curvature
dependence of £¥ to obtain the coefficient

B!, /dA{ 1d'C*+a'K } (B7)

where

o =3, & =4. (B8)
The above values of ' and &' are precisely those found
previously by Kleinert [14], who equated these quanti-
ties with the coefficients o and @ that appear in the
renormalization of k and k. Like the above calculation
of Bj, however, Kleinert’s calculation of the renormal-
ized rigidities used a naive cutoff on generalized wave
number and considered only the dependence of Faive
upon the cutoff length. He thus missed the additional
curvature-dependent, but cutoff-independent, contribu-
tion to Fi,ive that appears in Eq. (B4) as part of B,

Our final result for F,,q is obtained by adding the
correction term 8 Fy,,4 calculated in Appendix A, as given
in Eq. (A21), to the naive free energy obtained above.
Explicitly differentiating the factor of funq in Eq. (A21)
yields

SFuna = [D0/47r+1+1n( )] / dAK , (B9)

in which

Do = / dz In(z) ¥ (z) (B10)
is a constant whose value depends upon the functional
form of ¥. We see from the above that, while §F,,q4 is
independent of R, it does contain a contribution propor-
tional to In(¥/a). Adding § Fyyng to Fpaive can thus have
no effect on the overall dependence on In(R), which is de-
termined by the sum of coefficients Bg = B., + B.,, but
can and does affect the individual coefficients B, and B,
of In(a) and In(v).

Adding 6F,,q4 and ;‘,‘j};’e yields a final result for F, .4
which can be expressed as an expansion of form (49),
with coefficients given by Eqgs. (55) and (57), and with a
constant C given by

c=cC'-

F+1 /dAK. (B11)
127
As noted in Sec. II, the resulting values for a and & are
the same as those obtained previously by David [15].
Since David, like Kleinert, used a naive regularization
scheme, it is interesting to see why he nonetheless ob-
tained the correct value of & The reason is that David
used a regularization scheme in which one implicitly sets
v « a, thus giving a calculated free energy with a single
logarithmic term of the form In(R?/a2), with a coefficient

Br=B.+B,=B,+B, (B12)
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whose value is the same in either naive or corrected regu-
larization schemes. By correctly evaluating the total cur-
vature dependence of this combined coefficient, he then
obtained the correct value for & The problems with the
naive regularization scheme thus show up only if one at-
tempts to calculate & by a straightforward examination
of the dependence of the free energy on the naive cut-
off length, as done by Kleinert, or if one distinguishes
between the lengths a and v, as we have done here in
order to distinguish contributions arising from the short-
wavelength and long-wavelength cutoffs on the undula-
tion spectrum.

APPENDIX C: FREE ENERGY OF A SPHERE

In this Appendix, we calculate the free energy of a sim-
ple spherical vesicle by directly analyzing the sum over
spherical harmonic undulation modes. The normalized
undulation modes on a spherical surface of radius R are
given by functions

Yim(9) = Yim(0)/R

proportional to the spherical harmonics ¥;,,(c), where o
represents a solid angle. The differential operator £ of
Eq. (41) is known to reduce on a spherical surface to

(C1)

2
L= n<v4 + ﬁvz) , (C2)
yielding undulation eigenvalues
2
€] = KWy (u)l — ﬁ) ) (C3)

where —w; = —I(l + 1)/R? is an eigenvalue of the Lapla-
cian operator V2 on such a surface. Because of the trans-
lational and scale invariance of the bending energy, the
above spectrum provides no restoring force either for the
three I = 1 modes, which generate translations, or for the
I = 0 dilation mode. The total free energy Fa(V, AA) for
an idealized surface whose center-of-mass position is con-
strained to remain within a volume V and whose area is
allowed to fluctuate over a small range of values between
A and A+ AA is given by a sum

FA(V7 AA) = H[XO] + FAA + Ftrans + Fund P (04)
where H[X,] is the saddle-point value of Hamiltonian
(34), Faa arises from fluctuations of the area (I = 0),
Firans from overall translations (I = 1), and F,,q from
undulations (I > 2).

To calculate the undulation free energy on such a sur-
face, we use a regularization operator of the form

(0,0") = Z¢,m )i (o) (wib?) (C5)

in which b is a parameter with units of length which must
be adjusted to give the desired total density of modes. We
assume here, as elsewhere in this paper, that the form of
U(z) is chosen to give an area a? = b? per degree of
freedom on an infinite flat surface. We will first calculate
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Fyna as a function of b, R, and v, and then relate & to
the physical patch size a in order to reexpress F,,4 as a
function of the physical parameters a, R, and v.

The undulation free energy can be written as a sum

T & vt = 2
Funa = 5 ;(21 + l)ln(el ZWT)\IJ(w,b ). (C6)
This is conveniently decomposed as a sum
Fund—‘F1+In( )(N ) (07)
in which
Fi = Zi (21 + 1) @y (& — 2)]F (wib?) (C8)
1= 2 a 1\Wi ! ’
Ne = (21 + 1) ¥ (wib?) (C9)

i
=)

where &; = w;R? = l(I + 1) is a dimensionless squared
wave number and v* = kv*/(27T), N, is the total num-
ber of continuum degrees of freedom in the problem, as
defined in Eq. (46), and N, — 4 is the total number of
undulation modes.

To analyze the sums defining F; and N, we use the
Euler-McLaurin equation

> 9
l=a

which relates the value of a discrete sum of an analytic
function g(I) to the value of the corresponding integral,
and in which B; are the Bernoulli numbers B; = —1/2,
Bz = 1/6, Bg = Bs = 0, etc.

We first apply Eq. (C10) to the evaluation of Eq.
(C9) for N, in which g(I) = (20 + 1)¥(w;b?). We note
that, because each differentiation of ¥(l) = ¥(&;b%/R?)
brlngs out a prefactor of b/ R? that vanishes in the limit
b/R — 0, the derivatives of g(I) that appear in the Euler-
McLaurin series can be taken in this limit to act only on
the degeneracy factor 2 + 1. Because the second and
higher derivatives of this factor vanish, the resulting se-
ries contains only zeroth and first order derivatives, and

yields
N=A /

where A = 4w R?, and where we have defined a continu-
ous function w(l) = (I + 1)/R? and used the fact that

oo

_ [ Bji1 dig
‘/,, g(l)dl_zo(jJrl)!W,:

i=

» (C10)

(wb?) + (C11)

dw)R? = (2l + 1)dl (C12)
to simplify the integral. The R-independent contribution
of 1/3 agrees with that obtained by applying Eq. (A8)
(which gives the number of degrees of freedom on an
arbitrary surface) to a sphere.

Upon applying the Euler-McLaurin series to Eq. (C8)

for F;, we find that at the lower limit of [ = 2 the func-
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tion In[@;(&; — 2)] has derivatives of all orders that all re-
main nonzero in the limit b <« R. We can thus conclude
only that the difference between the discrete sum and the
integral is a number of order unity whose value cannot
be determined from the evaluation of a finite number of
“terms in Eq. (C10), or that

> 4 -
P = AI/ & (@ — 2)]F(wb?) + const  (C13)
2 0 41

where const denotes an unknown numerical constant.
From the asymptotic behavior of the integral in the above
in the limit b/R — 0, we find that

Cdw . =, o R
= AT/0 Z;ln(w)\ll(wb ) — Tln(b—z)
+D;[¥] + const (C14)

in this limit, where const denotes a numerical constant,
and

d\Il(rc)

Du[d] = / dz In(z) (C15)
0
is a number whose value depends explicitly upon the
functional form of function ¥.
Combining Egs. (C11) and (C14) then gives a total
undulation free energy of the form

R? 11 R? ,
Fund = Afuna(b) — Tln( i ) + ?Tln(u ) +c

(C16)

in which fun4(b) is the value of the free energy density
given in Eq. (51) evaluated with a replaced by b, and in
which

C' = 0.1275 + D;[¥] (C17)
The value of the numerical constant in the above was
obtained by numerically evaluating the sum in Eq. (C6)
and subtracting the analytically calculated asymptotic
form from the numerical free energy calculated for vari-
ous choices of R, a, v, k, and ¥(z).

In order to compare free energies for spheres of different
sizes, we wish to express this free energy as a function of
the area per continuum degree of freedom a? = A/N,
rather than as a function of the parameter b. Using Eq.
(C11) to relate b to a, while assuming that ¥ is chosen
to give b = a on a flat surface, gives a parameter value

2 =a?|l1+ —= a? + (C18)
127 R2 )

Using this to reexpress Fy,q4 as a function of a then yields

2 2
Fyna = Afumi(b) - —Tln (R ) + 4T In (52 )
+Cund y (Clg)

in agreement with Egs. (57) and (55), with a constant
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Cund = —0.2059 + D; [¥] - %Do[\il] . (C20)

The contribution Fy,.,ns of the I = 1 translational
modes is most easily calculated using normalized eigen-
modes of the form

9ol0) = g Bo(0) 2

where fp(o) denotes the unit normal to the sphere at
solid angle o, and &, denotes one of three Cartesian unit
vectors, with a = 1,2,3. The variation in mode am-
plitude h, that is induced by a rigid translation of the
surface by a physical displacement dX, in the direction
a is given by dh, = /47wR?/3 dX,. The translational
free energy Fy..n for a vesicle whose center of mass is
confined to a region of volume V = dXdX,dX3s is thus

VR® (4r\*?
(%)

The free energy contribution Fa 4 associated with fluc-

tuations of the area is obtained by using the Jacobian

(C21)

Firans = —T'In

(C22)

Ji' = 08A/0hgo = V16 (C23)

and letting A vary over a range of width.A A, to obtain

Faa = —Tln( (C24)

AA )
Viérv2 )
Combining Egs. (C19), (C22), and (C24) yields a total
free energy

2
Fa(V, AA) = Afsor(a) + HyenalXo] — —Tln(R )

V AA s
__Tln( = Tz) +Cr, (C25)
in which fiot = 7 + fund(a,v) and
Cr = 3.2799 + Dy[¥] - ———Do[\Il] . (C26)

The dependence of Cr upon the form of the regular-
ization function ¥ can quite generally be absorbed into
a corresponding dependence of the values of the phe-
nomenological rigidities « and & on the form of the func-
tion ¥ as well as the value of the nominal length a. The
coefficient C, that appears in size distribution (113) is
given by C, = e °F.

For the case where ¥(z) is taken to be the exponential
function ¥ (wb?) = e~wb/47 (i e., a diffusion propagator),
in which the factor of 1/4w in the exponential is included
in order to set a = b on a flat surface, we obtain

Cr =0.6748, C,=0.5092 . (C27)
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